This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85

1989 IMO Longlists, 87

Consider in a plane $ P$ the points $ O,A_1,A_2,A_3,A_4$ such that \[ \sigma(OA_iA_j) \geq 1 \quad \forall i, j \equal{} 1, 2, 3, 4, i \neq j.\] where $ \sigma(OA_iA_j)$ is the area of triangle $ OA_iA_j.$ Prove that there exists at least one pair $ i_0, j_0 \in \{1, 2, 3, 4\}$ such that \[ \sigma(OA_iA_j) \geq \sqrt{2}.\]

1971 IMO, 2

Prove that for every positive integer $m$ we can find a finite set $S$ of points in the plane, such that given any point $A$ of $S$, there are exactly $m$ points in $S$ at unit distance from $A$.

1992 French Mathematical Olympiad, Problem 1

Let $\Delta$ be a convex figure in a plane $\mathcal P$. Given a point $A\in\mathcal P$, to each pair $(M,N)$ of points in $\Delta$ we associate the point $m\in\mathcal P$ such that $\overrightarrow{Am}=\frac{\overrightarrow{MN}}2$ and denote by $\delta_A(\Delta)$ the set of all so obtained points $m$. (a) i. Prove that $\delta_A(\Delta)$ is centrally symmetric. ii. Under which conditions is $\delta_A(\Delta)=\Delta$? iii. Let $B,C$ be points in $\mathcal P$. Find a transformation which sends $\delta_B(\Delta)$ to $\delta_C(\Delta)$. (b) Determine $\delta_A(\Delta)$ if i. $\Delta$ is a set in the plane determined by two parallel lines. ii. $\Delta$ is bounded by a triangle. iii. $\Delta$ is a semi-disk. (c) Prove that in the cases $b.2$ and $b.3$ the lengths of the boundaries of $\Delta$ and $\delta_A(\Delta)$ are equal.

1967 IMO Shortlist, 6

Given a segment $AB$ of the length 1, define the set $M$ of points in the following way: it contains two points $A,B,$ and also all points obtained from $A,B$ by iterating the following rule: With every pair of points $X,Y$ the set $M$ contains also the point $Z$ of the segment $XY$ for which $YZ = 3XZ.$

1977 IMO Longlists, 59

Let $E$ be a set of $n$ points in the plane $(n \geq 3)$ whose coordinates are integers such that any three points from $E$ are vertices of a nondegenerate triangle whose centroid doesnt have both coordinates integers. Determine the maximal $n.$

1986 IMO Shortlist, 11

Let $f(n)$ be the least number of distinct points in the plane such that for each $k = 1, 2, \cdots, n$ there exists a straight line containing exactly $k$ of these points. Find an explicit expression for $f(n).$ [i]Simplified version.[/i] Show that $f(n)=\left[\frac{n+1}{2}\right]\left[\frac{n+2}{2}\right].$ Where $[x]$ denoting the greatest integer not exceeding $x.$

1991 IMO Shortlist, 9

In the plane we are given a set $ E$ of 1991 points, and certain pairs of these points are joined with a path. We suppose that for every point of $ E,$ there exist at least 1593 other points of $ E$ to which it is joined by a path. Show that there exist six points of $ E$ every pair of which are joined by a path. [i]Alternative version:[/i] Is it possible to find a set $ E$ of 1991 points in the plane and paths joining certain pairs of the points in $ E$ such that every point of $ E$ is joined with a path to at least 1592 other points of $ E,$ and in every subset of six points of $ E$ there exist at least two points that are not joined?

1998 China Team Selection Test, 2

Let $n$ be a natural number greater than 2. $l$ is a line on a plane. There are $n$ distinct points $P_1$, $P_2$, …, $P_n$ on $l$. Let the product of distances between $P_i$ and the other $n-1$ points be $d_i$ ($i = 1, 2,$ …, $n$). There exists a point $Q$, which does not lie on $l$, on the plane. Let the distance from $Q$ to $P_i$ be $C_i$ ($i = 1, 2,$ …, $n$). Find $S_n = \sum_{i = 1}^{n} (-1)^{n-i} \frac{c_i^2}{d_i}$.

1990 IMO Longlists, 7

$A$ and $B$ are two points in the plane $\alpha$, and line $r$ passes through points $A, B$. There are $n$ distinct points $P_1, P_2, \ldots, P_n$ in one of the half-plane divided by line $r$. Prove that there are at least $\sqrt n$ distinct values among the distances $AP_1, AP_2, \ldots, AP_n, BP_1, BP_2, \ldots, BP_n.$

1978 Germany Team Selection Test, 1

Let $E$ be a set of $n$ points in the plane $(n \geq 3)$ whose coordinates are integers such that any three points from $E$ are vertices of a nondegenerate triangle whose centroid doesnt have both coordinates integers. Determine the maximal $n.$