This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 5

1947 Moscow Mathematical Olympiad, 138

In space, $n$ wire triangles are situated so that any two of them have a common vertex and each vertex is the vertex of $k$ triangles. Find all $n$ and $k$ for which this is possible.

1978 All Soviet Union Mathematical Olympiad, 255

Given a finite set $K_0$ of points (in the plane or space). The sequence of sets $K_1, K_2, ... , K_n, ...$ is constructed according to the rule: [i]we take all the points of $K_i$, add all the symmetric points with respect to all its points, and, thus obtain $K_{i+1}$.[/i] a) Let $K_0$ consist of two points $A$ and $B$ with the distance $1$ unit between them. For what $n$ the set $K_n$ contains the point that is $1000$ units far from $A$? b) Let $K_0$ consist of three points that are the vertices of the equilateral triangle with the unit square. Find the area of minimal convex polygon containing $K_n. K_0$ below is the set of the unit volume tetrahedron vertices. c) How many faces contain the minimal convex polyhedron containing $K_1$? d) What is the volume of the above mentioned polyhedron? e) What is the volume of the minimal convex polyhedron containing $K_n$?

1973 All Soviet Union Mathematical Olympiad, 188

Given $4$ points in three-dimensional space, not lying in one plane. What is the number of such a parallelepipeds (bricks), that each point is a vertex of each parallelepiped?

1969 All Soviet Union Mathematical Olympiad, 121

Given $n$ points in the three dimensional space such, that the arbitrary triangle with the vertices in three of those points contains an angle greater than $120$ degrees. Prove that you can rearrange them to make a polyline (unclosed) with all the angles between the sequent links greater than $120$ degrees.

1975 All Soviet Union Mathematical Olympiad, 211

Given a finite set of polygons in the plane. Every two of them have a common point. Prove that there exists a straight line, that crosses all the polygons.