This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3

2018 Iran Team Selection Test, 3

In triangle $ABC$ let $M$ be the midpoint of $BC$. Let $\omega$ be a circle inside of $ABC$ and is tangent to $AB,AC$ at $E,F$, respectively. The tangents from $M$ to $\omega$ meet $\omega$ at $P,Q$ such that $P$ and $B$ lie on the same side of $AM$. Let $X \equiv PM \cap BF $ and $Y \equiv QM \cap CE $. If $2PM=BC$ prove that $XY$ is tangent to $\omega$. [i]Proposed by Iman Maghsoudi[/i]

2019 Thailand TST, 1

In triangle $ABC$ let $M$ be the midpoint of $BC$. Let $\omega$ be a circle inside of $ABC$ and is tangent to $AB,AC$ at $E,F$, respectively. The tangents from $M$ to $\omega$ meet $\omega$ at $P,Q$ such that $P$ and $B$ lie on the same side of $AM$. Let $X \equiv PM \cap BF $ and $Y \equiv QM \cap CE $. If $2PM=BC$ prove that $XY$ is tangent to $\omega$. [i]Proposed by Iman Maghsoudi[/i]

2018 Iran Team Selection Test, 3

In triangle $ABC$ let $M$ be the midpoint of $BC$. Let $\omega$ be a circle inside of $ABC$ and is tangent to $AB,AC$ at $E,F$, respectively. The tangents from $M$ to $\omega$ meet $\omega$ at $P,Q$ such that $P$ and $B$ lie on the same side of $AM$. Let $X \equiv PM \cap BF $ and $Y \equiv QM \cap CE $. If $2PM=BC$ prove that $XY$ is tangent to $\omega$. [i]Proposed by Iman Maghsoudi[/i]