This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3597

2022 ISI Entrance Examination, 4

Tags: polynomial
Let $P(x)$ be an odd degree polynomial in $x$ with real coefficients. Show that the equation $P(P(x))=0$ has at least as many distinct real roots as the equation $P(x)=0$.

2020 LIMIT Category 1, 5

Let $P(x),Q(x)$ be monic polynomials with integer coeeficients. Let $a_n=n!+n$ for all natural numbers $n$. Show that if $\frac{P(a_n)}{Q(a_n)}$ is an integer for all positive integer $n$ then $\frac{P(n)}{Q(n)}$ is an integer for every integer $n\neq0$. \\ [i]Hint (given in question): Try applying division algorithm for polynomials [/i]

2003 Italy TST, 3

Let $p(x)$ be a polynomial with integer coefficients and let $n$ be an integer. Suppose that there is a positive integer $k$ for which $f^{(k)}(n) = n$, where $f^{(k)}(x)$ is the polynomial obtained as the composition of $k$ polynomials $f$. Prove that $p(p(n)) = n$.

2024 Korea Summer Program Practice Test, 1

Find all polynomials $P$ with integer coefficients such that $P(P(x))-x$ is irreducible over $\mathbb{Z}[x]$.

2002 China Team Selection Test, 3

Let \[ f(x_1,x_2,x_3) = -2 \cdot (x_1^3+x_2^3+x_3^3) + 3 \cdot (x_1^2(x_2+x_3) + x_2^2 \cdot (x_1+x_3) + x_3^2 \cdot ( x_1+x_2 ) - 12x_1x_2x_3. \] For any reals $r,s,t$, we denote \[ g(r,s,t)=\max_{t\leq x_3\leq t+2} |f(r,r+2,x_3)+s|. \] Find the minimum value of $g(r,s,t)$.

2010 AIME Problems, 10

Find the number of second-degree polynomials $ f(x)$ with integer coefficients and integer zeros for which $ f(0)\equal{}2010$.

2010 IFYM, Sozopol, 8

Find all polynomials $f(x)$ with integer coefficients and leading coefficient equal to 1, for which $f(0)=2010$ and for each irrational $x$, $f(x)$ is also irrational.

1978 IMO Longlists, 47

Given the expression \[P_n(x) =\frac{1}{2^n}\left[(x +\sqrt{x^2 - 1})^n+(x-\sqrt{x^2 - 1})^n\right],\] prove: $(a) P_n(x)$ satisfies the identity \[P_n(x) - xP_{n-1}(x) + \frac{1}{4}P_{n-2}(x) \equiv 0.\] $(b) P_n(x)$ is a polynomial in $x$ of degree $n.$

2004 Tournament Of Towns, 3

P(x) and Q(x) are polynomials of positive degree such that for all x P(P(x))=Q(Q(x)) and P(P(P(x)))=Q(Q(Q(x))). Does this necessarily mean that P(x)=Q(x)?

1988 IMO Longlists, 10

Let $ a$ be the greatest positive root of the equation $ x^3 \minus{} 3 \cdot x^2 \plus{} 1 \equal{} 0.$ Show that $ \left[a^{1788} \right]$ and $ \left[a^{1988} \right]$ are both divisible by 17. Here $ [x]$ denotes the integer part of $ x.$

2010 Germany Team Selection Test, 3

Let $P(x)$ be a non-constant polynomial with integer coefficients. Prove that there is no function $T$ from the set of integers into the set of integers such that the number of integers $x$ with $T^n(x)=x$ is equal to $P(n)$ for every $n\geq 1$, where $T^n$ denotes the $n$-fold application of $T$. [i]Proposed by Jozsef Pelikan, Hungary[/i]

1990 IberoAmerican, 6

Let $f(x)$ be a cubic polynomial with rational coefficients. If the graph of $f(x)$ is tangent to the $x$ axis, prove that the roots of $f(x)$ are all rational.

2005 Estonia Team Selection Test, 4

Find all pairs $(a, b)$ of real numbers such that the roots of polynomials $6x^2 -24x -4a$ and $x^3 + ax^2 + bx - 8$ are all non-negative real numbers.

Kvant 2019, M2544

Let $P(x)=x^n +a_1x^{n-1}+a_2x^{n-2}+\ldots+a_{n-1}x+a_n$ be a polynomial of degree $n$ and $n$ real roots, all of them in the interval $(0,1)$. Prove that for all $k=\overline{1,n}$ the following inequality holds: \[(-1)^k(a_k+a_{k+1}+\ldots+a_n)>0.\] [i]Proposed by N. Safaei (Iran)[/i]

2010 Stanford Mathematics Tournament, 8

Let $P(x)$ be a polynomial of degree $n$ such that $P(x)=3^k$ for $0\le k \le n$. Find $P(n+1)$

1997 Slovenia National Olympiad, Problem 2

Determine all positive integers $n$ for which there exists a polynomial $p(x)$ of degree $n$ with integer coefficients such that it takes the value $n$ in $n$ distinct integer points and takes the value $0$ at point $0$.

2013 Princeton University Math Competition, 7

Suppose $P(x)$ is a degree $n$ monic polynomial with integer coefficients such that $2013$ divides $P(r)$ for exactly $1000$ values of $r$ between $1$ and $2013$ inclusive. Find the minimum value of $n$.

2015 IMAR Test, 4

(a) Show that, if $I \subset R$ is a closed bounded interval, and $f : I \to R$ is a non-constant monic polynomial function such that $max_{x\in I}|f(x)|< 2$, then there exists a non-constant monic polynomial function $g : I \to R$ such that $max_{x\in I} |g(x)| < 1$. (b) Show that there exists a closed bounded interval $I \subset R$ such that $max_{x\in I}|f(x)| \ge 2$ for every non-constant monic polynomial function $f : I \to R$.

1963 Polish MO Finals, 5

Prove that a fifth-degree polynomial $$ P(x) = x^5 - 3x^4 + 6x^3 - 3x^2 + 9x - 6$$ is not the product of two lower-degree polynomials with integer coefficients.

1998 Baltic Way, 6

Let $P$ be a polynomial of degree $6$ and let $a,b$ be real numbers such that $0<a<b$. Suppose that $P(a)=P(-a),P(b)=P(-b),P'(0)=0$. Prove that $P(x)=P(-x)$ for all real $x$.

2019 IFYM, Sozopol, 5

For $\forall$ $m\in \mathbb{N}$ with $\pi (m)$ we denote the number of prime numbers that are no bigger than $m$. Find all pairs of natural numbers $(a,b)$ for which there exist polynomials $P,Q\in \mathbb{Z}[x]$ so that for $\forall$ $n\in \mathbb{N}$ the following equation is true: $\frac{\pi (an)}{\pi (bn)} =\frac{P(n)}{Q(n)}$.

2018 ELMO Shortlist, 1

Determine all nonempty finite sets of positive integers $\{a_1, \dots, a_n\}$ such that $a_1 \cdots a_n$ divides $(x + a_1) \cdots (x + a_n)$ for every positive integer $x$. [i]Proposed by Ankan Bhattacharya[/i]

1986 IMO Longlists, 34

For each non-negative integer $n$, $F_n(x)$ is a polynomial in $x$ of degree $n$. Prove that if the identity \[F_n(2x)=\sum_{r=0}^{n} (-1)^{n-r} \binom nr 2^r F_r(x)\] holds for each n, then \[F_n(tx)=\sum_{r=0}^{n} \binom nr t^r (1-t)^{n-r} F_r(x)\]

2007 Germany Team Selection Test, 2

Let $ S$ be a finite set of points in the plane such that no three of them are on a line. For each convex polygon $ P$ whose vertices are in $ S$, let $ a(P)$ be the number of vertices of $ P$, and let $ b(P)$ be the number of points of $ S$ which are outside $ P$. A line segment, a point, and the empty set are considered as convex polygons of $ 2$, $ 1$, and $ 0$ vertices respectively. Prove that for every real number $ x$ \[\sum_{P}{x^{a(P)}(1 \minus{} x)^{b(P)}} \equal{} 1,\] where the sum is taken over all convex polygons with vertices in $ S$. [i]Alternative formulation[/i]: Let $ M$ be a finite point set in the plane and no three points are collinear. A subset $ A$ of $ M$ will be called round if its elements is the set of vertices of a convex $ A \minus{}$gon $ V(A).$ For each round subset let $ r(A)$ be the number of points from $ M$ which are exterior from the convex $ A \minus{}$gon $ V(A).$ Subsets with $ 0,1$ and 2 elements are always round, its corresponding polygons are the empty set, a point or a segment, respectively (for which all other points that are not vertices of the polygon are exterior). For each round subset $ A$ of $ M$ construct the polynomial \[ P_A(x) \equal{} x^{|A|}(1 \minus{} x)^{r(A)}. \] Show that the sum of polynomials for all round subsets is exactly the polynomial $ P(x) \equal{} 1.$ [i]Proposed by Federico Ardila, Colombia[/i]

2022 Argentina National Olympiad, 6

For every positive integer $n$, we consider the polynomial of real coefficients, of $2n+1$ terms, $$P(x)=a_{2n}x^{2n}+a_{2n-1}x^{2n-1}+...+a_1x+a_0$$ where all coefficients are real numbers satisfying $100 \le a_i \le 101$ for $0 \le i \le 2n$. Find the smallest possible value of $n$ such that the polynomial can have at least one real root.