This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3597

2022 VJIMC, 1

Assume that a real polynomial $P(x)$ has no real roots. Prove that the polynomial $$Q(x)=P(x)+\frac{P''(x)}{2!}+\frac{P^{(4)}(x)}{4!}+\ldots$$ also has no real roots.

1999 Ukraine Team Selection Test, 6

Show that for any $n \in N$ the polynomial $f(x) = (x^2 +x)^{2^n}+1$ is irreducible over $Z[x]$.

2013 Balkan MO Shortlist, A3

Prove that the polynomial $P (x) = (x^2- 8x + 25) (x^2 - 16x + 100) ... (x^2 - 8nx + 25n^2)- 1$, $n \in N^*$, cannot be written as the product of two polynomials with integer coefficients of degree greater or equal to $1$.

2005 Today's Calculation Of Integral, 36

A sequence of polynomial $f_n(x)\ (n=0,1,2,\cdots)$ satisfies $f_0(x)=2,f_1(x)=x$, \[f_n(x)=xf_{n-1}(x)-f_{n-2}(x),\ (n=2,3,4,\cdots)\] Let $x_n\ (n\geqq 2)$ be the maximum real root of the equation $f_n(x)=0\ (|x|\leqq 2)$ Evaluate \[\lim_{n\to\infty} n^2 \int_{x_n}^2 f_n(x)dx\]

1999 IMC, 1

a) Show that $\forall n \in \mathbb{N}_0, \exists A \in \mathbb{R}^{n\times n}: A^3=A+I$. b) Show that $\det(A)>0, \forall A$ fulfilling the above condition.

2009 India IMO Training Camp, 9

Let $ f(x)\equal{}\sum_{k\equal{}1}^n a_k x^k$ and $ g(x)\equal{}\sum_{k\equal{}1}^n \frac{a_k x^k}{2^k \minus{}1}$ be two polynomials with real coefficients. Let g(x) have $ 0,2^{n\plus{}1}$ as two of its roots. Prove That $ f(x)$ has a positive root less than $ 2^n$.

2007 Ukraine Team Selection Test, 8

$ F(x)$ is polynomial with real coefficients. $ F(x) \equal{} x^{4}\plus{}a_{1}x^{3}\plus{}a_{2}x^{2}\plus{}a_{1}x^{1}\plus{}a_{0}$. $ M$ is local maximum and $ m$ is minimum. Prove that $ \frac{3}{10}(\frac{a_{1}^{2}}{4}\minus{}\frac{2a_{2}}{3^{2}})^{2}< M\minus{}m < 3(\frac{a_{1}^{2}}{4}\minus{}\frac{2a_{2}}{3^{2}})^{2}$

1941 Putnam, A1

Prove that the polynomial $$(a-x)^6 -3a(a-x)^5 +\frac{5}{2} a^2 (a-x)^4 -\frac{1}{2} a^4 (a-x)^2 $$ takes only negative values for $0<x<a$.

1997 IMO Shortlist, 12

Let $ p$ be a prime number and $ f$ an integer polynomial of degree $ d$ such that $ f(0) = 0,f(1) = 1$ and $ f(n)$ is congruent to $ 0$ or $ 1$ modulo $ p$ for every integer $ n$. Prove that $ d\geq p - 1$.

2012 USAMTS Problems, 5

Let $P$ and $Q$ be two polynomials with real coeficients such that $P$ has degree greater than $1$ and \[P(Q(x)) = P(P(x)) + P(x).\]Show that $P(-x) = P(x) + x$.

2009 Italy TST, 1

Let $n$ be an even positive integer. An $n$-degree monic polynomial $P(x)$ has $n$ real roots (not necessarily distinct). Suppose $y$ is a positive real number such that for any real number $t<y$, we have $P(t)>0$. Prove that \[P(0)^{\frac{1}{n}}-P(y)^{\frac{1}{n}}\ge y.\]

2003 Cuba MO, 1

The roots of the equation $x^2 + (3a + b)x + a^2 + 2b^2 = 0$ are $x_1$ and $x_2$ with $x_1 \ne x_2$. Determine the values of $a$ and $b$ so that the roots of the equation $ x^2 - 2a(3a + 2b)x + 5a^2b^2 + 4b^4 = 0$ let $x^2_1$ and $x^2_2$.

2016 Kurschak Competition, 3

If $p,q\in\mathbb{R}[x]$ satisfy $p(p(x))=q(x)^2$, does it follow that $p(x)=r(x)^2$ for some $r\in\mathbb{R}[x]$?

2018 ELMO Shortlist, 4

Elmo calls a monic polynomial with real coefficients [i]tasty[/i] if all of its coefficients are in the range $[-1,1]$. A monic polynomial $P$ with real coefficients and complex roots $\chi_1,\cdots,\chi_m$ (counted with multiplicity) is given to Elmo, and he discovers that there does not exist a monic polynomial $Q$ with real coefficients such that $PQ$ is tasty. Find all possible values of $\max\left(|\chi_1|,\cdots,|\chi_m|\right)$. [i]Proposed by Carl Schildkraut[/i]

1960 AMC 12/AHSME, 9

The fraction $\frac{a^2+b^2-c^2+2ab}{a^2+c^2-b^2+2ac}$ is (with suitable restrictions of the values of $a$, $b$, and $c$): $ \textbf{(A) }\text{irreducible}\qquad\textbf{(B) }\text{reducible to negative 1}\qquad$ $\textbf{(C) }\text{reducible to a polynomial of three terms} \qquad\textbf{(D) }\text{reducible to} \frac{a-b+c}{a+b-c} \qquad\textbf{(E) }\text{reducible to} \frac{a+b-c}{a-b+c} $

2008 ITest, 100

Let $\alpha$ be a root of $x^6-x-1$, and call two polynomials $p$ and $q$ with integer coefficients $\textit{equivalent}$ if $p(\alpha)\equiv q(\alpha)\pmod3$. It is known that every such polynomial is equivalent to exactly one of $0,1,x,x^2,\ldots,x^{727}$. Find the largest integer $n<728$ for which there exists a polynomial $p$ such that $p^3-p-x^n$ is equivalent to $0$.

2007 Romania Team Selection Test, 1

Let \[f = X^{n}+a_{n-1}X^{n-1}+\ldots+a_{1}X+a_{0}\] be an integer polynomial of degree $n \geq 3$ such that $a_{k}+a_{n-k}$ is even for all $k \in \overline{1,n-1}$ and $a_{0}$ is even. Suppose that $f = gh$, where $g,h$ are integer polynomials and $\deg g \leq \deg h$ and all the coefficients of $h$ are odd. Prove that $f$ has an integer root.

2019 Iran Team Selection Test, 1

Find all polynomials $P(x,y)$ with real coefficients such that for all real numbers $x,y$ and $z$: $$P(x,2yz)+P(y,2zx)+P(z,2xy)=P(x+y+z,xy+yz+zx).$$ [i]Proposed by Sina Saleh[/i]

1984 All Soviet Union Mathematical Olympiad, 383

The teacher wrote on a blackboard: $$x^2 + 10x + 20$$ Then all the pupils in the class came up in turn and either decreased or increased by $1$ either the free coefficient or the coefficient at $x$, but not both. Finally they have obtained: $$x^2 + 20x + 10$$ Is it true that some time during the process there was written the square polynomial with the integer roots?

2018 Ecuador NMO (OMEC), 4

Let $k$ be a real number. Show that the polynomial $p (x) = x^3-24x + k$ has at most an integer root.

2010 China National Olympiad, 3

Suppose $a_1,a_2,a_3,b_1,b_2,b_3$ are distinct positive integers such that \[(n \plus{} 1)a_1^n \plus{} na_2^n \plus{} (n \minus{} 1)a_3^n|(n \plus{} 1)b_1^n \plus{} nb_2^n \plus{} (n \minus{} 1)b_3^n\] holds for all positive integers $n$. Prove that there exists $k\in N$ such that $ b_i \equal{} ka_i$ for $ i \equal{} 1,2,3$.

2016 Iran MO (3rd Round), 2

We call a function $g$ [i]special [/i] if $g(x)=a^{f(x)}$ (for all $x$) where $a$ is a positive integer and $f$ is polynomial with integer coefficients such that $f(n)>0$ for all positive integers $n$. A function is called an [i]exponential polynomial[/i] if it is obtained from the product or sum of special functions. For instance, $2^{x}3^{x^{2}+x-1}+5^{2x}$ is an exponential polynomial. Prove that there does not exist a non-zero exponential polynomial $f(x)$ and a non-constant polynomial $P(x)$ with integer coefficients such that $$P(n)|f(n)$$ for all positive integers $n$.

2018 AMC 12/AHSME, 22

Consider polynomials $P(x)$ of degree at most $3$, each of whose coefficients is an element of $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$. How many such polynomials satisfy $P(-1) = -9$? $\textbf{(A) } 110 \qquad \textbf{(B) } 143 \qquad \textbf{(C) } 165 \qquad \textbf{(D) } 220 \qquad \textbf{(E) } 286 $

1989 China Team Selection Test, 3

Find the greatest $n$ such that $(z+1)^n = z^n + 1$ has all its non-zero roots in the unitary circumference, e.g. $(\alpha+1)^n = \alpha^n + 1, \alpha \neq 0$ implies $|\alpha| = 1.$

2024 Korea Winter Program Practice Test, Q5

For each positive integer $n>1$, if $n=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_k^{\alpha_k}$($p_i$ are pairwise different prime numbers and $\alpha_i$ are positive integers), define $f(n)$ as $\alpha_1+\alpha_2+\cdots+\alpha_k$. For $n=1$, let $f(1)=0$. Find all pairs of integer polynomials $P(x)$ and $Q(x)$ such that for any positive integer $m$, $f(P(m))=Q(f(m))$ holds.