This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3597

1996 Israel National Olympiad, 2

Find all polynomials $P(x)$ satisfying $P(x+1)-2P(x)+P(x-1)= x$ for all $x$

2001 Moldova National Olympiad, Problem 3

Find all polynomials $P(x)$ with real coefficieints such that $P\left(x^2\right)=P(x)P(x-1)$ for all $x\in\mathbb R$.

2024 ELMO Shortlist, N7

For a prime $p$, let $\mathbb{F}_p$ denote the integers modulo $p$, and let $\mathbb{F}_p[x]$ be the set of polynomials with coefficients in $\mathbb{F}_p$. Find all $p$ for which there exists a quartic polynomial $P(x) \in \mathbb{F}_p[x]$ such that for all integers $k$, there exists some integer $\ell$ such that $P(\ell) \equiv k \pmod p$. (Note that there are $p^4(p-1)$ quartic polynomials in $\mathbb{F}_p[x]$ in total.) [i]Aprameya Tripathy[/i]

2017 Purple Comet Problems, 12

Let $P$ be a polynomial satisfying $P(x + 1) + P(x - 1) = x^3$ for all real numbers $x$. Find the value of $P(12)$.

1985 IMO Shortlist, 3

For any polynomial $P(x)=a_0+a_1x+\ldots+a_kx^k$ with integer coefficients, the number of odd coefficients is denoted by $o(P)$. For $i-0,1,2,\ldots$ let $Q_i(x)=(1+x)^i$. Prove that if $i_1,i_2,\ldots,i_n$ are integers satisfying $0\le i_1<i_2<\ldots<i_n$, then: \[ o(Q_{i_{1}}+Q_{i_{2}}+\ldots+Q_{i_{n}})\ge o(Q_{i_{1}}). \]

2013 JBMO TST - Turkey, 4

For all positive real numbers $a, b, c$ satisfying $a+b+c=1$, prove that \[ \frac{a^4+5b^4}{a(a+2b)} + \frac{b^4+5c^4}{b(b+2c)} + \frac{c^4+5a^4}{c(c+2a)} \geq 1- ab-bc-ca \]

2023 Ukraine National Mathematical Olympiad, 10.6

Let $P(x), Q(x), R(x)$ be polynomials with integer coefficients, such that $P(x) = Q(x)R(x)$. Let's denote by $a$ and $b$ the largest absolute values of coefficients of $P, Q$ correspondingly. Does $b \le 2023a$ always hold? [i]Proposed by Dmytro Petrovsky[/i]

2020 GQMO, 6

For every integer $n$ not equal to $1$ or $-1$, define $S(n)$ as the smallest integer greater than $1$ that divides $n$. In particular, $S(0)=2$. We also define $S(1) = S(-1) = 1$. Let $f$ be a non-constant polynomial with integer coefficients such that $S(f(n)) \leq S(n)$ for every positive integer $n$. Prove that $f(0)=0$. [b]Note:[/b] A non-constant polynomial with integer coefficients is a function of the form $f(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_k x^k$, where $k$ is a positive integer and $a_0,a_1,\ldots,a_k$ are integers such that $a_k \neq 0$. [i]Pitchayut Saengrungkongka, Thailand[/i]

2021 Iran Team Selection Test, 3

Prove there exist two relatively prime polynomials $P(x),Q(x)$ having integer coefficients and a real number $u>0$ such that if for positive integers $a,b,c,d$ we have: $$|\frac{a}{c}-1|^{2021} \le \frac{u}{|d||c|^{1010}}$$ $$| (\frac{a}{c})^{2020}-\frac{b}{d}| \le \frac{u}{|d||c|^{1010}}$$ Then we have : $$bP(\frac{a}{c})=dQ(\frac{a}{c})$$ (Two polynomials are relatively prime if they don't have a common root) Proposed by [i]Navid Safaii[/i] and [i]Alireza Haghi[/i]

2003 Vietnam National Olympiad, 2

Define $p(x) = 4x^{3}-2x^{2}-15x+9, q(x) = 12x^{3}+6x^{2}-7x+1$. Show that each polynomial has just three distinct real roots. Let $A$ be the largest root of $p(x)$ and $B$ the largest root of $q(x)$. Show that $A^{2}+3 B^{2}= 4$.

2013 Kosovo National Mathematical Olympiad, 2

Math teacher wrote in a table a polynomial $P(x)$ with integer coefficients and he said: "Today my daughter have a birthday.If in polynomial $P(x)$ we have $x=a$ where $a$ is the age of my daughter we have $P(a)=a$ and $P(0)=p$ where $p$ is a prime number such that $p>a$." How old is the daughter of math teacher?

2016 Saudi Arabia GMO TST, 2

Let $a, b$ be given two real number with $a \ne 0$. Find all polynomials $P$ with real coefficients such that $x P(x - a) = (x - b)P(x)$ for all $x\in R$

2005 Greece Team Selection Test, 3

Let the polynomial $P(x)=x^3+19x^2+94x+a$ where $a\in\mathbb{N}$. If $p$ a prime number, prove that no more than three numbers of the numbers $P(0), P(1),\ldots, P(p-1)$ are divisible by $p$.

2010 Postal Coaching, 6

Find all polynomials $P$ with integer coefficients which satisfy the property that, for any relatively prime integers $a$ and $b$, the sequence $\{P (an + b) \}_{n \ge 1}$ contains an infinite number of terms, any two of which are relatively prime.

2024 Tuymaada Olympiad, 7

Given are quadratic trinomials $f$ and $g$ with integral coefficients. For each positive integer $n$ there is an integer $k$ such that \[\frac{f(k)}{g(k)}=\frac{n + 1}{n}. \] Prove that $f$ and $g$ have a common root. [i] Proposed by A. Golovanov [/i]

2011 ELMO Shortlist, 6

Let $Q(x)$ be a polynomial with integer coefficients. Prove that there exists a polynomial $P(x)$ with integer coefficients such that for every integer $n\ge\deg{Q}$, \[\sum_{i=0}^{n}\frac{!i P(i)}{i!(n-i)!} = Q(n),\]where $!i$ denotes the number of derangements (permutations with no fixed points) of $1,2,\ldots,i$. [i]Calvin Deng.[/i]

2014 Contests, 2

Find all polynomials $P(x)$ with real coefficients such that $P(2014) = 1$ and, for some integer $c$: $xP(x-c) = (x - 2014)P(x)$

1979 Romania Team Selection Tests, 4.

Give an example of a second degree polynomial $P\in \mathbb{R}[x]$ such that \[\forall x\in \mathbb{R}\text{ with } |x|\leqslant 1: \; \left|P(x)+\frac{1}{x-4}\right| \leqslant 0.01.\] Are there linear polynomials with this property? [i]Octavian Stănășilă[/i]

2021 JHMT HS, 7

A line passing through $(20,21)$ intersects the curve $y = x^3-2x^2-3x+5$ at three distinct points $A, B,$ and $C,$ such that $B$ is the midpoint of $\overline{AC}$. The slope of this line is $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$.

1994 Irish Math Olympiad, 3

Find all real polynomials $ f(x)$ satisfying $ f(x^2)\equal{}f(x)f(x\minus{}1)$ for all $ x$.

2009 Kyrgyzstan National Olympiad, 3

For function $ f: \mathbb{R} \to \mathbb{R}$ given that $ f(x^2 +x +3) +2 \cdot f(x^2 - 3x + 5) = 6x^2 - 10x +17$, calculate $ f(2009)$.

2018 Purple Comet Problems, 18

Find the positive integer $k$ such that the roots of $x^3 - 15x^2 + kx -1105$ are three distinct collinear points in the complex plane.

1999 AIME Problems, 3

Find the sum of all positive integers $n$ for which $n^2-19n+99$ is a perfect square.

2024 Indonesia MO, 7

Suppose $P(x) = x^n + a_{n-1} x^{n-1} + \cdots + a_1x + a_0$ where $a_0, a_1, \ldots, a_{n-1}$ are reals for $n\geq 1$ (monic $n$th-degree polynomial with real coefficients). If the inequality \[ 3(P(x)+P(y)) \geq P(x+y) \] holds for all reals $x,y$, determine the minimum possible value of $P(2024)$.

2008 China Team Selection Test, 3

Let $ z_{1},z_{2},z_{3}$ be three complex numbers of moduli less than or equal to $ 1$. $ w_{1},w_{2}$ are two roots of the equation $ (z \minus{} z_{1})(z \minus{} z_{2}) \plus{} (z \minus{} z_{2})(z \minus{} z_{3}) \plus{} (z \minus{} z_{3})(z \minus{} z_{1}) \equal{} 0$. Prove that, for $ j \equal{} 1,2,3$, $\min\{|z_{j} \minus{} w_{1}|,|z_{j} \minus{} w_{2}|\}\leq 1$ holds.