This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 364

2018 India PRMO, 1

A book is published in three volumes, the pages being numbered from $1$ onwards. The page numbers are continued from the first volume to the second volume to the third. The number of pages in the second volume is $50$ more than that in the first volume, and the number pages in the third volume is one and a half times that in the second. The sum of the page numbers on the first pages of the three volumes is $1709$. If $n$ is the last page number, what is the largest prime factor of $n$?

1970 Czech and Slovak Olympiad III A, 1

Let $p>2$ be a prime and $a,b$ positive integers such that \[\frac ab=1+\frac12+\frac13+\cdots+\frac{1}{p-1}.\] Show that $p$ is a divisor of $a.$

2013 QEDMO 13th or 12th, 9

Are there infinitely many different natural numbers $a_1,a_2, a_3,...$ so that for every integer $k$ only finitely many of the numbers $a_1 + k$,$a_2 + k$,$a_3 + k$,$...$ are numbers prime?

2021 239 Open Mathematical Olympiad, 1

You are given $n$ different primes $p_1, p_2,..., p_n$. Consider the polynomial $$x^n + a_1x^{n -1} + a_2x^{n - 2} + ...+ a_{n - 1}x + a_n$$, where $a_i$ is the product of the first $i$ given prime numbers. For what $n$ can it have an integer root?

2017 Hanoi Open Mathematics Competitions, 12

Does there exist a sequence of $2017$ consecutive integers which contains exactly $17$ primes?

2024 Kosovo Team Selection Test, P1

Find all prime numbers $p$ and $q$ such that $p^q + 5q - 2$ is also a prime number.

2003 IMO Shortlist, 7

The sequence $a_0$, $a_1$, $a_2,$ $\ldots$ is defined as follows: \[a_0=2, \qquad a_{k+1}=2a_k^2-1 \quad\text{for }k \geq 0.\] Prove that if an odd prime $p$ divides $a_n$, then $2^{n+3}$ divides $p^2-1$. [hide="comment"] Hi guys , Here is a nice problem: Let be given a sequence $a_n$ such that $a_0=2$ and $a_{n+1}=2a_n^2-1$ . Show that if $p$ is an odd prime such that $p|a_n$ then we have $p^2\equiv 1\pmod{2^{n+3}}$ Here are some futher question proposed by me :Prove or disprove that : 1) $gcd(n,a_n)=1$ 2) for every odd prime number $p$ we have $a_m\equiv \pm 1\pmod{p}$ where $m=\frac{p^2-1}{2^k}$ where $k=1$ or $2$ Thanks kiu si u [i]Edited by Orl.[/i] [/hide]

2018 Bosnia And Herzegovina - Regional Olympiad, 4

We observe that number $10001=73\cdot137$ is not prime. Show that every member of infinite sequence $10001, 100010001, 1000100010001,...$ is not prime

2025 Bulgarian Spring Mathematical Competition, 9.4

Determine all functions $f: \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$ such that $f(a) + 2ab + 2f(b)$ divides $f(a)^2 + 4f(b)^2$ for any positive integers $a$ and $b$.

2003 BAMO, 4

An integer $n > 1$ has the following property: for every (positive) divisor $d$ of $n, d + 1$ is a divisor of $n + 1$. Prove that $n$ is prime.

2015 Gulf Math Olympiad, 1

a) Suppose that $n$ is an odd integer. Prove that $k(n-k)$ is divisible by $2$ for all positive integers $k$. b) Find an integer $k$ such that $k(100-k)$ is not divisible by $11$. c) Suppose that $p$ is an odd prime, and $n$ is an integer. Prove that there is an integer $k$ such that $k(n-k)$ is not divisible by $p$. d) Suppose that $p,q$ are two different odd primes, and $n$ is an integer. Prove that there is an integer $k$ such that $k(n-k)$ is not divisible by any of $p,q$.

2013 Greece JBMO TST, 3

If $p$ is a prime positive integer and $x,y$ are positive integers, find , in terms of $p$, all pairs $(x,y)$ that are solutions of the equation: $p(x-2)=x(y-1)$. (1) If it is also given that $x+y=21$, find all triplets $(x,y,p)$ that are solutions to equation (1).

1999 Estonia National Olympiad, 1

Prove that if $p$ is an odd prime, then $p^2(p^2 -1999)$ is divisible by $6$ but not by $12$.

2016 Croatia Team Selection Test, Problem 4

Let $p > 10^9$ be a prime number such that $4p + 1$ is also prime. Prove that the decimal expansion of $\frac{1}{4p+1}$ contains all the digits $0,1, \ldots, 9$.

2001 Estonia National Olympiad, 4

Prove that for any integer $a > 1$ there is a prime $p$ for which $1+a+a^2+...+ a^{p-1}$ is composite.

2009 Korea Junior Math Olympiad, 1

For primes $a, b,c$ that satis fy the following, calculate $abc$. $\bullet$ $b + 8$ is a multiple of $a$, $\bullet$ $b^2 - 1$ is a multiple of $a$ and $c$ $\bullet$ $b + c = a^2 - 1$.

2013 Balkan MO Shortlist, N1

Let $p$ be a prime number. Determine all triples $(a,b,c)$ of positive integers such that $a + b + c < 2p\sqrt{p}$ and $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{p}$

2018 German National Olympiad, 5

We define a sequence of positive integers $a_1,a_2,a_3,\dots$ as follows: Let $a_1=1$ and iteratively, for $k =2,3,\dots$ let $a_k$ be the largest prime factor of $1+a_1a_2\cdots a_{k-1}$. Show that the number $11$ is not an element of this sequence.

2003 France Team Selection Test, 3

Let $p_1,p_2,\ldots,p_n$ be distinct primes greater than $3$. Show that $2^{p_1p_2\cdots p_n}+1$ has at least $4^n$ divisors.

2010 Philippine MO, 1

Find all primes that can be written both as a sum of two primes and as a difference of two primes.

1949-56 Chisinau City MO, 7

Prove that if the product $1\cdot 2\cdot ...\cdot n$ ($n> 3$) is not divisible by $n + 1$, then $n + 1$ is prime.

2018 Ukraine Team Selection Test, 7

The prime number $p > 2$ and the integer $n$ are given. Prove that the number $pn^2$ has no more than one divisor $d$ for which $n^2+d$ is the square of the natural number. .

2009 VJIMC, Problem 2

Prove that the number $$2^{2^k-1}-2^k-1$$is composite (not prime) for all positive integers $k>2$.

2021 Nigerian MO Round 3, Problem 3

Find all pairs of natural numbers $(p, n)$ with $p$ prime such that $p^6+p^5+n^3+n=n^5+n^2$.

2015 NIMO Summer Contest, 11

Tags: prime , square
We say positive integer $n$ is $\emph{metallic}$ if there is no prime of the form $m^2-n$. What is the sum of the three smallest metallic integers? [i] Proposed by Lewis Chen [/i]