This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 364

2010 Regional Olympiad of Mexico Center Zone, 2

Let $p>5$ be a prime number. Show that $p-4$ cannot be the fourth power of a prime number.

2017 Balkan MO Shortlist, N5

Given a positive odd integer $n$, show that the arithmetic mean of fractional parts $\{\frac{k^{2n}}{p}\}, k=1,..., \frac{p-1}{2}$ is the same for infinitely many primes $p$ .

2012 NZMOC Camp Selection Problems, 4

A pair of numbers are [i]twin primes[/i] if they differ by two, and both are prime. Prove that, except for the pair $\{3, 5\}$, the sum of any pair of twin primes is a multiple of $ 12$.

1984 All Soviet Union Mathematical Olympiad, 386

Let us call "absolutely prime" the prime number, if having transposed its digits in an arbitrary order, we obtain prime number again. Prove that its notation cannot contain more than three different digits.

2014 Hanoi Open Mathematics Competitions, 4

If $p$ is a prime number such that there exist positive integers $a$ and $b$ such that $\frac{1}{p}=\frac{1}{a^2}+\frac{1}{b^2}$ then $p$ is (A): $3$, (B): $5$, (C): $11$, (D): $7$, (E) None of the above.

1999 IMO Shortlist, 1

Find all the pairs of positive integers $(x,p)$ such that p is a prime, $x \leq 2p$ and $x^{p-1}$ is a divisor of $ (p-1)^{x}+1$.

1962 Czech and Slovak Olympiad III A, 1

Determine all integers $x$ such that $2x^2-x-36$ is a perfect square of a prime.

2015 Gulf Math Olympiad, 1

a) Suppose that $n$ is an odd integer. Prove that $k(n-k)$ is divisible by $2$ for all positive integers $k$. b) Find an integer $k$ such that $k(100-k)$ is not divisible by $11$. c) Suppose that $p$ is an odd prime, and $n$ is an integer. Prove that there is an integer $k$ such that $k(n-k)$ is not divisible by $p$. d) Suppose that $p,q$ are two different odd primes, and $n$ is an integer. Prove that there is an integer $k$ such that $k(n-k)$ is not divisible by any of $p,q$.

2013 Czech-Polish-Slovak Junior Match, 1

Decide whether there are infinitely many primes $p$ having a multiple in the form $n^2 + n + 1$ for some natural number $n$

2025 Macedonian Balkan MO TST, 4

Let $n$ be a positive integer. Prove that for every odd prime $p$ dividing $n^2 + n + 2$, there exist integers $a, b$ such that $p = a^2 + 7b^2$.

2003 France Team Selection Test, 3

Let $p_1,p_2,\ldots,p_n$ be distinct primes greater than $3$. Show that $2^{p_1p_2\cdots p_n}+1$ has at least $4^n$ divisors.

2023 Thailand TST, 1

Find all positive integers $n>2$ such that $$ n! \mid \prod_{ p<q\le n, p,q \, \text{primes}} (p+q)$$

2022 IMO Shortlist, N6

Let $Q$ be a set of prime numbers, not necessarily finite. For a positive integer $n$ consider its prime factorization: define $p(n)$ to be the sum of all the exponents and $q(n)$ to be the sum of the exponents corresponding only to primes in $Q$. A positive integer $n$ is called [i]special[/i] if $p(n)+p(n+1)$ and $q(n)+q(n+1)$ are both even integers. Prove that there is a constant $c>0$ independent of the set $Q$ such that for any positive integer $N>100$, the number of special integers in $[1,N]$ is at least $cN$. (For example, if $Q=\{3,7\}$, then $p(42)=3$, $q(42)=2$, $p(63)=3$, $q(63)=3$, $p(2022)=3$, $q(2022)=1$.)

2010 Gheorghe Vranceanu, 3

Prove that however we choose the majority of numbers among an even number of the first consecutive natural numbers, there will be two numbers among this choosing whose sum is a prime.

2016 Korea Summer Program Practice Test, 3

Let $p > 10^9$ be a prime number such that $4p + 1$ is also prime. Prove that the decimal expansion of $\frac{1}{4p+1}$ contains all the digits $0,1, \ldots, 9$.

2022 Bulgarian Spring Math Competition, Problem 9.3

Find all primes $p$, such that there exist positive integers $x$, $y$ which satisfy $$\begin{cases} p + 49 = 2x^2\\ p^2 + 49 = 2y^2\\ \end{cases}$$

2019 Indonesia MO, 1

Given that $n$ and $r$ are positive integers. Suppose that \[ 1 + 2 + \dots + (n - 1) = (n + 1) + (n + 2) + \dots + (n + r) \] Prove that $n$ is a composite number.

2017 Romania National Olympiad, 4

Find all prime numbers with $n \ge 3$ digits, having the property: for every $k \in \{1, 2, . . . , n -2\}$, deleting any $k$ of its digits leaves a prime number.

2015 IFYM, Sozopol, 5

Let $p>3$ be a prime number. The natural numbers $a,b,c, d$ are such that $a+b+c+d$ and $a^3+b^3+c^3+d^3$ are divisible by $p$. Prove that for all odd $n$, $a^n+b^n+c^n+d^n$ is divisible by $p$.

2012 Tournament of Towns, 2

The cells of a $1\times 2n$ board are labelled $1,2,...,, n, -n,..., -2, -1$ from left to right. A marker is placed on an arbitrary cell. If the label of the cell is positive, the marker moves to the right a number of cells equal to the value of the label. If the label is negative, the marker moves to the left a number of cells equal to the absolute value of the label. Prove that if the marker can always visit all cells of the board, then $2n + 1$ is prime.

2019 Bundeswettbewerb Mathematik, 4

Prove that for no integer $k \ge 2$, between $10k$ and $10k + 100$ there are more than $23$ prime numbers.

2022 AMC 12/AHSME, 3

Tags: prime
How many of the first ten numbers of the sequence $121$, $11211$, $1112111$, ... are prime numbers? $\textbf{(A) } 0 \qquad \textbf{(B) }1 \qquad \textbf{(C) }2 \qquad \textbf{(D) }3 \qquad \textbf{(E) }4$

2012 Tournament of Towns, 4

Let $C(n)$ be the number of prime divisors of a positive integer $n$. (a) Consider set $S$ of all pairs of positive integers $(a, b)$ such that $a \ne b$ and $C(a + b) = C(a) + C(b)$. Is $S$ finite or infinite? (b) Define $S'$ as a subset of S consisting of the pairs $(a, b)$ such that $C(a+b) > 1000$. Is $S'$ finite or infinite?

2016 Romanian Master of Mathematics Shortlist, A2

Let $p > 3$ be a prime number, and let $F_p$ denote the (fi nite) set of residue classes modulo $p$. Let $S_d$ denote the set of $2$-variable polynomials $P(x, y)$ with coefficients in $F_p$, total degree $\le d$, and satisfying $P(x, y) = P(y,- x -y)$. Show that $$|S_d| = p^{\lceil (d+1)(d+2)/6 \rceil}$$. [i]The total degree of a $2$-variable polynomial $P(x, y)$ is the largest value of $i + j$ among monomials $x^iy^j$ [/i] appearing in $P$.

2004 Mexico National Olympiad, 1

Find all the prime number $p, q$ and r with $p < q < r$, such that $25pq + r = 2004$ and $pqr + 1 $ is a perfect square.