This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 364

1996 Greece Junior Math Olympiad, 4b

Determine whether exist a prime number $p$ and natural number $n$ such that $n^2 + n + p = 1996$.

2023 Belarus Team Selection Test, 2.1

Find all positive integers $n>2$ such that $$ n! \mid \prod_{ p<q\le n, p,q \, \text{primes}} (p+q)$$

2012 Korea Junior Math Olympiad, 6

$p > 3$ is a prime number such that $p|2^{p-1} - 1$ and $p \nmid 2^x - 1$ for $x = 1, 2,...,p-2$. Let $p = 2k + 3$. Now we define sequence $\{a_n\}$ as $$a_i = a_{i+k} = 2^i \,\, (1 \le i \le k ), \,\,\,\, a_{j+2k} = a_ja_{j+k} \,\, (j \le 1)$$ Prove that there exist $2k$ consecutive terms of sequence $a_{x+1},a_{x+2},..., a_{x+2k}$ such that $a_{x+i } \not\equiv a_{x+j}$ (mod $p$) for all $1 \le i < j \le 2k$ .

1995 IMO Shortlist, 6

Let $ p$ be an odd prime number. How many $ p$-element subsets $ A$ of $ \{1,2,\dots,2p\}$ are there, the sum of whose elements is divisible by $ p$?

2010 Thailand Mathematical Olympiad, 6

Show that no triples of primes $p, q, r$ satisfy $p > r, q > r$, and $pq | r^p + r^q$

2024 Kosovo Team Selection Test, P1

Find all prime numbers $p$ and $q$ such that $p^q + 5q - 2$ is also a prime number.

2021 239 Open Mathematical Olympiad, 1

You are given $n$ different primes $p_1, p_2,..., p_n$. Consider the polynomial $$x^n + a_1x^{n -1} + a_2x^{n - 2} + ...+ a_{n - 1}x + a_n$$, where $a_i$ is the product of the first $i$ given prime numbers. For what $n$ can it have an integer root?

2018 Malaysia National Olympiad, A6

How many integers $n$ are there such that $n^4 + 2n^3 + 2n^2 + 2n + 1$ is a prime number?

2021 Indonesia TST, C

Let $p$ be an odd prime. Determine the number of nonempty subsets from $\{1, 2, \dots, p - 1\}$ for which the sum of its elements is divisible by $p$.

2013 QEDMO 13th or 12th, 9

Are there infinitely many different natural numbers $a_1,a_2, a_3,...$ so that for every integer $k$ only finitely many of the numbers $a_1 + k$,$a_2 + k$,$a_3 + k$,$...$ are numbers prime?

2006 Greece JBMO TST, 2

Let $a,b,c$ be positive integers such that the numbers $k=b^c+a, l=a^b+c, m=c^a+b$ to be prime numbers. Prove that at least two of the numbers $k,l,m$ are equal.

2013 NZMOC Camp Selection Problems, 2

Find all primes that can be written both as a sum and as a difference of two primes (note that $ 1$ is not a prime).

2000 Mexico National Olympiad, 4

Let $a$ and $b$ be positive integers not divisible by $5$. A sequence of integers is constructed as follows: the first term is $5$, and every consequent term is obtained by multiplying its precedent by $a$ and adding $b$. (For example, if $a = 2$ and $b = 4$, the first three terms are $5,14,32$.) What is the maximum possible number of primes that can occur before encoutering the first composite term?

1979 IMO Shortlist, 7

If $p$ and $q$ are natural numbers so that \[ \frac{p}{q}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+ \ldots -\frac{1}{1318}+\frac{1}{1319}, \] prove that $p$ is divisible with $1979$.

2019 Tournament Of Towns, 1

Let us call the number of factors in the prime decomposition of an integer $n > 1$ the complexity of $n$. For example, [i]complexity [/i] of numbers $4$ and $6$ is equal to $2$. Find all $n$ such that all integers between $n$ and $2n$ have complexity a) not greater than the complexity of $n$. b) less than the complexity of $n$. (Boris Frenkin)

2008 IMAC Arhimede, 1

Find all prime numbers $ p $ for which $ 1 + p\cdot 2^{p} $ is a perfect square.

2011 Bundeswettbewerb Mathematik, 2

Proove that if for a positive integer $n$ , both $3n + 1$ and $10n + 1$ are perfect squares , then $29n + 11$ is not a prime number.

1998 Estonia National Olympiad, 4

Prove that if for a positive integer $n$ is $5^n + 3^n + 1$ is prime number, then $n$ is divided by $12$.

2025 Bulgarian Winter Tournament, 11.4

Let $A$ be a set of $2025$ non-negative integers and $f: \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$ be a function with the following two properties: 1) For every two distinct positive integers $x,y$ there exists $a\in A$, such that $x-y$ divides $f(x+a) - f(y+a)$. 2) For every positive integer $N$ there exists a positive integer $t$ such that $f(x) \neq f(y)$ whenever $x,y \in [t, t+N]$ are distinct. Prove that there are infinitely many primes $p$ such that $p$ divides $f(x)$ for some positive integer $x$.

2012 Albania National Olympiad, 1

Find all primes $p$ such that $p+2$ and $p^2+2p-8$ are also primes.

2010 BAMO, 1

We write $\{a,b,c\}$ for the set of three different positive integers $a, b$, and $c$. By choosing some or all of the numbers a, b and c, we can form seven nonempty subsets of $\{a,b,c\}$. We can then calculate the sum of the elements of each subset. For example, for the set $\{4,7,42\}$ we will find sums of $4, 7, 42,11, 46, 49$, and $53$ for its seven subsets. Since $7, 11$, and $53$ are prime, the set $\{4,7,42\}$ has exactly three subsets whose sums are prime. (Recall that prime numbers are numbers with exactly two different factors, $1$ and themselves. In particular, the number $1$ is not prime.) What is the largest possible number of subsets with prime sums that a set of three different positive integers can have? Give an example of a set $\{a,b,c\}$ that has that number of subsets with prime sums, and explain why no other three-element set could have more.

1979 IMO, 1

If $p$ and $q$ are natural numbers so that \[ \frac{p}{q}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+ \ldots -\frac{1}{1318}+\frac{1}{1319}, \] prove that $p$ is divisible with $1979$.

2024 Indonesia MO, 2

The triplet of positive integers $(a,b,c)$ with $a<b<c$ is called a [i]fatal[/i] triplet if there exist three nonzero integers $p,q,r$ which satisfy the equation $a^p b^q c^r = 1$. As an example, $(2,3,12)$ is a fatal triplet since $2^2 \cdot 3^1 \cdot (12)^{-1} = 1$. The positive integer $N$ is called [i]fatal[/i] if there exists a fatal triplet $(a,b,c)$ satisfying $N=a+b+c$. (a) Prove that 16 is not [i]fatal[/i]. (b) Prove that all integers bigger than 16 which are [b]not[/b] an integer multiple of 6 are fatal.

2018 Malaysia National Olympiad, A6

A [i]semiprime [/i] is a positive integer that is a product of two prime numbers. For example, $9$ and $10$ are semiprimes. How many semiprimes less than $100$ are there?

2003 Junior Balkan Team Selection Tests - Romania, 2

Consider the prime numbers $n_1< n_2 <...< n_{31}$. Prove that if $30$ divides $n_1^4 + n_2^4+...+n_{31}^4$, then among these numbers one can find three consecutive primes.