Found problems: 364
2010 Contests, 1
We write $\{a,b,c\}$ for the set of three different positive integers $a, b$, and $c$. By choosing some or all of the numbers a, b and c, we can form seven nonempty subsets of $\{a,b,c\}$. We can then calculate the sum of the elements of each subset. For example, for the set $\{4,7,42\}$ we will find sums of $4, 7, 42,11, 46, 49$, and $53$ for its seven subsets. Since $7, 11$, and $53$ are prime, the set $\{4,7,42\}$ has exactly three subsets whose sums are prime. (Recall that prime numbers are numbers with exactly two different factors, $1$ and themselves. In particular, the number $1$ is not prime.)
What is the largest possible number of subsets with prime sums that a set of three different positive integers can have? Give an example of a set $\{a,b,c\}$ that has that number of subsets with prime sums, and explain why no other three-element set could have more.
2015 Belarus Team Selection Test, 1
Find all positive integers $n$ such that $n=q(q^2-q-1)=r(2r+1)$ for some primes $q$ and $r$.
B.Gilevich
2012 Tournament of Towns, 5
Let $p$ be a prime number. A set of $p + 2$ positive integers, not necessarily distinct, is called [i]interesting [/i] if the sum of any $p$ of them is divisible by each of the other two. Determine all interesting sets.
2010 QEDMO 7th, 1
Find all natural numbers $n$ for which both $n^n + 1$ and $(2n)^{2n} + 1$ are prime numbers.
1985 Spain Mathematical Olympiad, 4
Prove that for each positive integer $k $ there exists a triple $(a,b,c)$ of positive integers such that $abc = k(a+b+c)$. In all such cases prove that $a^3+b^3+c^3$ is not a prime.
2000 Singapore MO Open, 2
Show that $240$ divides all numbers of the form $p^4 - q^4$, where p and q are prime numbers strictly greater than $5$. Show also that $240$ is the greatest common divisor of all numbers of the form $p^4 - q^4$, with $p$ and $q$ prime numbers strictly greater than $5$.
2002 IMO Shortlist, 3
Let $p_1,p_2,\ldots,p_n$ be distinct primes greater than $3$. Show that $2^{p_1p_2\cdots p_n}+1$ has at least $4^n$ divisors.
1979 IMO Shortlist, 7
If $p$ and $q$ are natural numbers so that \[ \frac{p}{q}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+ \ldots -\frac{1}{1318}+\frac{1}{1319}, \] prove that $p$ is divisible with $1979$.
2015 Regional Olympiad of Mexico Southeast, 1
Find all integers $n>1$ such that every prime that divides $n^6-1$ also divides $n^5-n^3-n^2+1$.
2022 Assara - South Russian Girl's MO, 5
Find all pairs of prime numbers $p, q$ such that the number $pq + p - 6$ is also prime.
1992 Mexico National Olympiad, 2
Given a prime number $p$, how many $4$-tuples $(a, b, c, d)$ of positive integers with $0 \le a, b, c, d \le p-1$ satisfy $ad = bc$ mod $p$?
2006 Cuba MO, 5
The following sequence of positive integers $a_1, a_2, ..., a_{400}$ satisfies the relationship $a_{n+1} = \tau (a_n) + \tau (n)$ for all $1 \le n \le 399$, where $\tau (k) $ is the number of positive integer divisors that $k$ has. Prove that in the sequence there are no more than $210$ prime numbers.
1970 Polish MO Finals, 3
Prove that an integer $n > 1$ is a prime number if and only if, for every integer $k$ with $1\le k \le n-1$, the binomial coefficient $n \choose k$ is divisible by $n$.
2023 Germany Team Selection Test, 1
Does there exist a positive odd integer $n$ so that there are primes $p_1$, $p_2$ dividing $2^n-1$ with $p_1-p_2=2$?
2023 India IMO Training Camp, 3
Let $Q$ be a set of prime numbers, not necessarily finite. For a positive integer $n$ consider its prime factorization: define $p(n)$ to be the sum of all the exponents and $q(n)$ to be the sum of the exponents corresponding only to primes in $Q$. A positive integer $n$ is called [i]special[/i] if $p(n)+p(n+1)$ and $q(n)+q(n+1)$ are both even integers. Prove that there is a constant $c>0$ independent of the set $Q$ such that for any positive integer $N>100$, the number of special integers in $[1,N]$ is at least $cN$.
(For example, if $Q=\{3,7\}$, then $p(42)=3$, $q(42)=2$, $p(63)=3$, $q(63)=3$, $p(2022)=3$, $q(2022)=1$.)
2004 Tournament Of Towns, 2
Find all possible values of $n \ge 1$ for which there exist $n$ consecutive positive integers whose sum is a prime number.
1998 Estonia National Olympiad, 2
Find all prime numbers of the form $10101...01$.
2022 IMO Shortlist, N6
Let $Q$ be a set of prime numbers, not necessarily finite. For a positive integer $n$ consider its prime factorization: define $p(n)$ to be the sum of all the exponents and $q(n)$ to be the sum of the exponents corresponding only to primes in $Q$. A positive integer $n$ is called [i]special[/i] if $p(n)+p(n+1)$ and $q(n)+q(n+1)$ are both even integers. Prove that there is a constant $c>0$ independent of the set $Q$ such that for any positive integer $N>100$, the number of special integers in $[1,N]$ is at least $cN$.
(For example, if $Q=\{3,7\}$, then $p(42)=3$, $q(42)=2$, $p(63)=3$, $q(63)=3$, $p(2022)=3$, $q(2022)=1$.)
2013 Balkan MO Shortlist, N6
Prove that there do not exist distinct prime numbers $p$ and $q$ and a positive integer $n$ satisfying the equation $p^{q-1}- q^{p-1}=4n^3$
2015 India IMO Training Camp, 2
Find all triples $(p, x, y)$ consisting of a prime number $p$ and two positive integers $x$ and $y$ such that $x^{p -1} + y$ and $x + y^ {p -1}$ are both powers of $p$.
[i]Proposed by Belgium[/i]
1997 Austrian-Polish Competition, 5
Let $p_1,p_2,p_3,p_4$ be four distinct primes. Prove that there is no polynomial $Q(x) = ax^3 + bx^2 + cx + d$ with integer coefficients such that $|Q(p_1)| =|Q(p_2)| = |Q(p_3)|= |Q(p_4 )| = 3$.
2008 IMAC Arhimede, 1
Find all prime numbers $ p $ for which $ 1 + p\cdot 2^{p} $ is a perfect square.
2018 Federal Competition For Advanced Students, P2, 3
There are $n$ children in a room. Each child has at least one piece of candy. In Round $1$, Round $2$, etc., additional pieces of candy are distributed among the children according to the following rule:
In Round $k$, each child whose number of pieces of candy is relatively prime to $k$ receives an additional piece.
Show that after a sufficient number of rounds the children in the room have at most two different numbers of pieces of candy.
[i](Proposed by Theresia Eisenkölbl)[/i]
2005 Korea Junior Math Olympiad, 6
For two different prime numbers $p, q$, define $S_{p,q} = \{p,q,pq\}$. If two elements in $S_{p,q}$ are numbers in the form of $x^2 + 2005y^2, (x, y \in Z)$, prove that all three elements in $S_{p,q}$ are in such form.
1979 IMO Longlists, 25
If $p$ and $q$ are natural numbers so that \[ \frac{p}{q}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+ \ldots -\frac{1}{1318}+\frac{1}{1319}, \] prove that $p$ is divisible with $1979$.