This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 721

2015 Israel National Olympiad, 7

The Fibonacci sequence $F_n$ is defined by $F_0=0,F_1=1$ and the recurrence relation $F_n=F_{n-1}+F_{n-2}$ for all integers $n\geq2$. Let $p\geq3$ be a prime number. [list=a] [*] Prove that $F_{p-1}+F_{p+1}-1$ is divisible by $p$. [*] Prove that $F_{p^{k+1}-1}+F_{p^{k+1}+1}-\left(F_{p^k-1}+F_{p^k+1}\right)$ is divisible by $p^{k+1}$ for any positive integer $k$. [/list]

2006 MOP Homework, 4

Given a prime number $p > 2$. Find the least $n\in Z_+$, for which every set of $n$ perfect squares not divisible by $p$ contains nonempty subset with product of all it's elements equal to $1\ (\text{mod}\ p)$

2025 China National Olympiad, 5

Let $p$ be a prime number and $f$ be a bijection from $\left\{0,1,\ldots,p-1\right\}$ to itself. Suppose that for integers $a,b \in \left\{0,1,\ldots,p-1\right\}$, $|f(a) - f(b)|\leqslant 2024$ if $p \mid a^2 - b$. Prove that there exists infinite many $p$ such that there exists such an $f$ and there also exists infinite many $p$ such that there doesn't exist such an $f$.

1995 IMO Shortlist, 8

Let $ p$ be an odd prime. Determine positive integers $ x$ and $ y$ for which $ x \leq y$ and $ \sqrt{2p} \minus{} \sqrt{x} \minus{} \sqrt{y}$ is non-negative and as small as possible.

2010 Poland - Second Round, 3

Positive integer numbers $k$ and $n$ satisfy the inequality $k > n!$. Prove that there exist pairwisely different prime numbers $p_1, p_2, \ldots, p_n$ which are divisors of the numbers $k+1, k+2, \ldots, k+n$ respectively (i.e. $p_i|k+i$).

2015 Portugal MO, 3

The numbers from $1$ to $2015$ are written on sheets so that if if $n-m$ is a prime, then $n$ and $m$ are on different sheets. What is the minimum number of sheets required?

1990 Romania Team Selection Test, 10

Let $p,q$ be positive prime numbers and suppose $q>5$. Prove that if $q \mid 2^{p}+3^{p}$, then $q>p$. [i]Laurentiu Panaitopol[/i]

2020 New Zealand MO, 4

Determine all prime numbers $p$ such that $p^2 - 6$ and $p^2 + 6$ are both prime numbers.

2007 Danube Mathematical Competition, 4

Let $ a,n$ be positive integers such that $ a\ge(n\minus{}1)!$. Prove that there exist $ n$ [i]distinct[/i] prime numbers $ p_1,\ldots,p_n$ so that $ p_i|a\plus{}i$, for all $ i\equal{}\overline{1,\ldots,n}$.

2013 National Olympiad First Round, 4

The numbers $1,2,\dots, 49$ are written on unit squares of a $7\times 7$ chessboard such that consequtive numbers are on unit squares sharing a common edge. At most how many prime numbers can a row have? $ \textbf{(A)}\ 7 \qquad\textbf{(B)}\ 6 \qquad\textbf{(C)}\ 5 \qquad\textbf{(D)}\ 3 \qquad\textbf{(E)}\ 3 $

2020 Latvia TST, 1.5

Given a $6\times 6$ square consisting of unit squares, denote its rows and columns from $1$ to $6$. Figure [i]p-horse[/i] can move from square $(x; y)$ to $(x’; y’)$ if and only if both $x + x’$ and $y + y’$ are primes. At the start the [i]p-horse[/i] is located in one of the unit squares. $a)$ Can the [i]p-horse[/i] visit every unit square exactly once? $b$) Can the [i]p-horse[/i] visit every unit square exactly once and with the last move return to the initial starting position?

2010 Contests, 3

Suppose that $a_1,...,a_{15}$ are prime numbers forming an arithmetic progression with common difference $d > 0$ if $a_1 > 15$ show that $d > 30000$

2016 Hong Kong TST, 4

Find all triples $(m,p,q)$ such that \begin{align*} 2^mp^2 +1=q^7, \end{align*} where $p$ and $q$ are ptimes and $m$ is a positive integer.

2024 SG Originals, Q5

Let $p$ be a prime number. Determine the largest possible $n$ such that the following holds: it is possible to fill an $n\times n$ table with integers $a_{ik}$ in the $i$th row and $k$th column, for $1\le i,k\le n$, such that for any quadruple $i,j,k,l$ with $1\le i<j\le n$ and $1\le k<l\le n$, the number $a_{ik}a_{jl}-a_{il}a_{jk}$ is not divisible by $p$. [i]Proposed by oneplusone[/i]

2007 Korea National Olympiad, 4

For all positive integer $ n\geq 2$, prove that product of all prime numbers less or equal than $ n$ is smaller than $ 4^{n}$.

2009 All-Russian Olympiad, 6

Can be colored the positive integers with 2009 colors if we know that each color paints infinitive integers and that we can not find three numbers colored by three different colors for which the product of two numbers equal to the third one?

2014 CentroAmerican, 1

A positive integer is called [i]tico[/i] if it is the product of three different prime numbers that add up to 74. Verify that 2014 is tico. Which year will be the next tico year? Which one will be the last tico year in history?

2016 IFYM, Sozopol, 3

Find the least natural number $n\geq 5$, for which $x^n\equiv 16\, (mod\, p)$ has a solution for any prime number $p$.

2017 Dutch IMO TST, 2

Let $n \geq 4$ be an integer. Consider a regular $2n-$gon for which to every vertex, an integer is assigned, which we call the value of said vertex. If four distinct vertices of this $2n-$gon form a rectangle, we say that the sum of the values of these vertices is a rectangular sum. Determine for which (not necessarily positive) integers $m$ the integers $m + 1, m + 2, . . . , m + 2n$ can be assigned to the vertices (in some order) in such a way that every rectangular sum is a prime number. (Prime numbers are positive by definition.)

2021 Moldova Team Selection Test, 2

Prove that if $p$ and $q$ are two prime numbers, such that $$p+p^2+p^3+...+p^q=q+q^2+q^3+...+q^p,$$ then $p=q$.

2009 China Team Selection Test, 2

Find all integers $ n\ge 2$ having the following property: for any $ k$ integers $ a_{1},a_{2},\cdots,a_{k}$ which aren't congruent to each other (modulo $ n$), there exists an integer polynomial $ f(x)$ such that congruence equation $ f(x)\equiv 0 (mod n)$ exactly has $ k$ roots $ x\equiv a_{1},a_{2},\cdots,a_{k} (mod n).$

2016 IberoAmerican, 1

Find all prime numbers $p,q,r,k$ such that $pq+qr+rp = 12k+1$

2004 Irish Math Olympiad, 1

Determine all pairs of prime numbers $(p, q)$, with $2 \leq p, q < 100$, such that $p+6, p+10, q+4, q+10$ and $p+q+1$ are all prime numbers.

2003 Austrian-Polish Competition, 9

Take any 26 distinct numbers from {1, 2, ... , 100}. Show that there must be a non-empty subset of the $ 26$ whose product is a square. [hide] I think that the upper limit for such subset is 37.[/hide]

2019 Polish MO Finals, 2

Let $p$ a prime number and $r$ an integer such that $p|r^7-1$. Prove that if there exist integers $a, b$ such that $p|r+1-a^2$ and $p|r^2+1-b^2$, then there exist an integer $c$ such that $p|r^3+1-c^2$.