This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 721

2016 Iran Team Selection Test, 3

Let $p \neq 13$ be a prime number of the form $8k+5$ such that $39$ is a quadratic non-residue modulo $p$. Prove that the equation $$x_1^4+x_2^4+x_3^4+x_4^4 \equiv 0 \pmod p$$ has a solution in integers such that $p\nmid x_1x_2x_3x_4$.

2016 Croatia Team Selection Test, Problem 4

Find all pairs $(p,q)$ of prime numbers such that $$ p(p^2 - p - 1) = q(2q + 3) .$$

2017 Dutch BxMO TST, 2

Let define a function $f: \mathbb{N} \rightarrow \mathbb{Z}$ such that : $i)$$f(p)=1$ for all prime numbers $p$. $ii)$$f(xy)=xf(y)+yf(x)$ for all positive integers $x,y$ find the smallest $n \geq 2016$ such that $f(n)=n$

2016 Croatia Team Selection Test, Problem 4

Let $p > 10^9$ be a prime number such that $4p + 1$ is also prime. Prove that the decimal expansion of $\frac{1}{4p+1}$ contains all the digits $0,1, \ldots, 9$.

2015 JBMO TST - Turkey, 1

Let $p,q$ be prime numbers such that their sum isn't divisible by $3$. Find the all $(p,q,r,n)$ positive integer quadruples satisfy: $$p+q=r(p-q)^n$$ [i]Proposed by Şahin Emrah[/i]

2010 Canadian Mathematical Olympiad Qualification Repechage, 4

Determine the smallest positive integer $m$ with the property that $m^3-3m^2+2m$ is divisible by both $79$ and $83$.

2010 Contests, 1

a) Show that it is possible to pair off the numbers $1,2,3,\ldots ,10$ so that the sums of each of the five pairs are five different prime numbers. b) Is it possible to pair off the numbers $1,2,3,\ldots ,20$ so that the sums of each of the ten pairs are ten different prime numbers?

2006 Germany Team Selection Test, 1

Let $ a$, $ b$, $ c$, $ d$, $ e$, $ f$ be positive integers and let $ S = a+b+c+d+e+f$. Suppose that the number $ S$ divides $ abc+def$ and $ ab+bc+ca-de-ef-df$. Prove that $ S$ is composite.

2022 MMATHS, 10

Define a function $f$ on the positive integers as follows: $f(n) = m$, where $m$ is the least positive integer such that $n$ is a factor of $m^2$. Find the smallest integer $M$ such that $\sqrt{M}$ is both a product of prime numbers, of which there are at least $3$, and a factor of $$\sum_{ d|M} f(d),$$ the sum of $f(d)$ for all positive integers $d$ that divide $M$.

2013 Dutch IMO TST, 3

Fix a sequence $a_1,a_2,a_3\ldots$ of integers satisfying the following condition:for all prime numbers $p$ and all positive integers $k$,we have $a_{pk+1}=pa_k-3a_p+13$.Determine all possible values of $a_{2013}$.

2022 USAJMO, 5

Find all pairs of primes $(p, q)$ for which $p-q$ and $pq-q$ are both perfect squares.

2022 IMO Shortlist, N7

Let $k$ be a positive integer and let $S$ be a finite set of odd prime numbers. Prove that there is at most one way (up to rotation and reflection) to place the elements of $S$ around the circle such that the product of any two neighbors is of the form $x^2+x+k$ for some positive integer $x$.

2013 Taiwan TST Round 1, 1

Starting from 37, adding 5 before each previous term, forms the following sequence: \[37,537,5537,55537,555537,...\] How many prime numbers are there in this sequence?

2003 SNSB Admission, 3

Let be a prime number $ p, $ the quotient ring $ R=\mathbb{Z}[X,Y]/(pX,pY), $ and a prime ideal $ I\supset pA $ that is not maximal. Show that the ring $ \left\{ r/i|r\in R, i\in I \right\} $ is factorial.

2020 OMpD, 3

Determine all integers $n$ such that both of the numbers: $$|n^3 - 4n^2 + 3n - 35| \text{ and } |n^2 + 4n + 8|$$ are both prime numbers.

2022 IOQM India, 3

Consider the set $\mathcal{T}$ of all triangles whose sides are distinct prime numbers which are also in arithmetic progression. Let $\triangle \in \mathcal{T}$ be the triangle with least perimeter. If $a^{\circ}$ is the largest angle of $\triangle$ and $L$ is its perimeter, determine the value of $\frac{a}{L}$.

2023 Germany Team Selection Test, 3

Let $f(x)$ be a monic polynomial of degree $2023$ with positive integer coefficients. Show that for any sufficiently large integer $N$ and any prime number $p>2023N$, the product \[f(1)f(2)\dots f(N)\] is at most $\binom{2023}{2}$ times divisible by $p$. [i]Proposed by Ashwin Sah[/i]

1997 IMO Shortlist, 14

Let $ b, m, n$ be positive integers such that $ b > 1$ and $ m \neq n.$ Prove that if $ b^m \minus{} 1$ and $ b^n \minus{} 1$ have the same prime divisors, then $ b \plus{} 1$ is a power of 2.

2009 Germany Team Selection Test, 1

For which $ n \geq 2, n \in \mathbb{N}$ are there positive integers $ A_1, A_2, \ldots, A_n$ which are not the same pairwise and have the property that the product $ \prod^n_{i \equal{} 1} (A_i \plus{} k)$ is a power for each natural number $ k.$

2020 Junior Balkаn MO, 4

Find all prime numbers $p$ and $q$ such that $$1 + \frac{p^q - q^p}{p + q}$$ is a prime number. [i]Proposed by Dorlir Ahmeti, Albania[/i]

2022 Pan-American Girls' Math Olympiad, 6

Ana and Bety play a game alternating turns. Initially, Ana chooses an odd possitive integer and composite $n$ such that $2^j<n<2^{j+1}$ with $2<j$. In her first turn Bety chooses an odd composite integer $n_1$ such that \[n_1\leq \frac{1^n+2^n+\dots+(n-1)^n}{2(n-1)^{n-1}}.\] Then, on her other turn, Ana chooses a prime number $p_1$ that divides $n_1$. If the prime that Ana chooses is $3$, $5$ or $7$, the Ana wins; otherwise Bety chooses an odd composite positive integer $n_2$ such that \[n_2\leq \frac{1^{p_1}+2^{p_1}+\dots+(p_1-1)^{p_1}}{2(p_1-1)^{p_1-1}}.\] After that, on her turn, Ana chooses a prime $p_2$ that divides $n_2,$, if $p_2$ is $3$, $5$, or $7$, Ana wins, otherwise the process repeats. Also, Ana wins if at any time Bety cannot choose an odd composite positive integer in the corresponding range. Bety wins if she manages to play at least $j-1$ turns. Find which of the two players has a winning strategy.

2019 India PRMO, 20

Consider the set $E$ of all natural numbers $n$ such that whenn divided by $11, 12, 13$, respectively, the remainders, int that order, are distinct prime numbers in an arithmetic progression. If $N$ is the largest number in $E$, find the sum of digits of $N$.

2016 Azerbaijan IMO TST First Round, 1

Find the maximum value of natural components of number $96$ that we can seperate such that all of them must be relatively prime number withh each other.

2013 Tournament of Towns, 6

The number $1- \frac12 +\frac13-\frac14+...+\frac{1}{2n-1}-\frac{1}{2n}$ is represented as an irreducible fraction. If $3n+1$ is a prime number, prove that the numerator of this fraction is a multiple of $3n + 1$.

2019 India PRMO, 21

Consider the set $E = \{5, 6, 7, 8, 9\}$. For any partition ${A, B}$ of $E$, with both $A$ and $B$ non-empty, consider the number obtained by adding the product of elements of $A$ to the product of elements of $B$. Let $N$ be the largest prime number amonh these numbers. Find the sum of the digits of $N$.