This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

1951 Moscow Mathematical Olympiad, 198

* On a plane, given points $A, B, C$ and angles $\angle D, \angle E, \angle F$ each less than $180^o$ and the sum equal to $360^o$, construct with the help of ruler and protractor a point $O$ such that $\angle AOB = \angle D, \angle BOC = \angle E$ and $\angle COA = \angle F.$