This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1148

1995 China Team Selection Test, 3

Prove that the interval $\lbrack 0,1 \rbrack$ can be split into black and white intervals for any quadratic polynomial $P(x)$, such that the sum of weights of the black intervals is equal to the sum of weights of the white intervals. (Define the weight of the interval $\lbrack a,b \rbrack$ as $P(b) - P(a)$.) Does the same result hold with a degree 3 or degree 5 polynomial?

1985 Balkan MO, 2

Let $a,b,c,d \in [-\frac{\pi}{2}, \frac{\pi}{2}]$ be real numbers such that $\sin{a}+\sin{b}+\sin{c}+\sin{d}=1$ and $\cos{2a}+\cos{2b}+\cos{2c}+\cos{2d}\geq \frac{10}{3}$. Prove that $a,b,c,d \in [0, \frac{\pi}{6}]$

1970 Polish MO Finals, 6

Find the smallest real number $A$ such that, for every quadratic polynomial $f(x)$ satisfying $ | f(x)| \le 1$ for $0 \le x \le 1$, it holds that $f' (0) \le A$.

2014 Greece Team Selection Test, 1

Let $(x_{n}) \ n\geq 1$ be a sequence of real numbers with $x_{1}=1$ satisfying $2x_{n+1}=3x_{n}+\sqrt{5x_{n}^{2}-4}$ a) Prove that the sequence consists only of natural numbers. b) Check if there are terms of the sequence divisible by $2011$.

2013 Tuymaada Olympiad, 6

Quadratic trinomials with positive leading coefficients are arranged in the squares of a $6 \times 6$ table. Their $108$ coefficients are all integers from $-60$ to $47$ (each number is used once). Prove that at least in one column the sum of all trinomials has a real root. [i]K. Kokhas & F. Petrov[/i]

2005 Czech And Slovak Olympiad III A, 5

Let $p,q, r, s$ be real numbers with $q \ne -1$ and $s \ne -1$. Prove that the quadratic equations $x^2 + px+q = 0$ and $x^2 +rx+s = 0$ have a common root, while their other roots are inverse of each other, if and only if $pr = (q+1)(s+1)$ and $p(q+1)s = r(s+1)q$. (A double root is counted twice.)

2005 AMC 12/AHSME, 9

Tags: quadratic
There are two values of $ a$ for which the equation $ 4x^2 \plus{} ax \plus{} 8x \plus{} 9 \equal{} 0$ has only one solution for $ x$. What is the sum of these values of $ a$? $ \textbf{(A)}\ \minus{}16\qquad \textbf{(B)}\ \minus{}8\qquad \textbf{(C)}\ 0\qquad \textbf{(D)}\ 8\qquad \textbf{(E)}\ 20$

2011 India Regional Mathematical Olympiad, 3

Tags: quadratic
A natural number $n$ is chosen strictly between two consecutive perfect squares. The smaller of these two squares is obtained by subtracting $k$ from $n$ and the larger by adding $l$ to $n.$ Prove that $n-kl$ is a perfect square.

2008 Turkey MO (2nd round), 2

$ a \minus{} )$ Find all prime $ p$ such that $ \dfrac{7^{p \minus{} 1} \minus{} 1}{p}$ is a perfect square $ b \minus{} )$ Find all prime $ p$ such that $ \dfrac{11^{p \minus{} 1} \minus{} 1}{p}$ is a perfect square

2011 AIME Problems, 15

Let $P(x)=x^2-3x-9$. A real number $x$ is chosen at random from the interval $5\leq x \leq 15$. The probability that $\lfloor \sqrt{P(x)} \rfloor = \sqrt{P(\lfloor x \rfloor )}$ is equal to $\dfrac{\sqrt{a}+\sqrt{b}+\sqrt{c}-d}{e}$, where $a,b,c,d$ and $e$ are positive integers and none of $a,b,$ or $c$ is divisible by the square of a prime. Find $a+b+c+d+e$.

2011 Vietnam National Olympiad, 1

Define the sequence of integers $\langle a_n\rangle$ as; \[a_0=1, \quad a_1=-1, \quad \text{ and } \quad a_n=6a_{n-1}+5a_{n-2} \quad \forall n\geq 2.\] Prove that $a_{2012}-2010$ is divisible by $2011.$

1951 AMC 12/AHSME, 26

In the equation $ \frac {x(x \minus{} 1) \minus{} (m \plus{} 1)}{(x \minus{} 1)(m \minus{} 1)} \equal{} \frac {x}{m}$ the roots are equal when $ \textbf{(A)}\ m \equal{} 1 \qquad\textbf{(B)}\ m \equal{} \frac {1}{2} \qquad\textbf{(C)}\ m \equal{} 0 \qquad\textbf{(D)}\ m \equal{} \minus{} 1 \qquad\textbf{(E)}\ m \equal{} \minus{} \frac {1}{2}$

2008 Moldova National Olympiad, 9.1

Let $ f_m: \mathbb R \to \mathbb R$, $ f_m(x)\equal{}(m^2\plus{}m\plus{}1)x^2\minus{}2(m^2\plus{}1)x\plus{}m^2\minus{}m\plus{}1,$ where $ m \in \mathbb R$. 1) Find the fixed common point of all this parabolas. 2) Find $ m$ such that the distance from that fixed point to $ Oy$ is minimal.

1991 Romania Team Selection Test, 1

Suppose that $ a,b$ are positive integers for which $ A\equal{}\frac{a\plus{}1}{b}\plus{}\frac{b}{a}$ is an integer.Prove that $ A\equal{}3$.

2023 UMD Math Competition Part I, #14

Tags: quadratic , algebra
Let $m \neq -1$ be a real number. Consider the quadratic equation $$ (m + 1)x^2 + 4mx + m - 3 =0. $$ Which of the following must be true? $\quad\rm(I)$ Both roots of this equation must be real. $\quad\rm(II)$ If both roots are real, then one of the roots must be less than $-1.$ $\quad\rm(III)$ If both roots are real, then one of the roots must be larger than $1.$ $$ \mathrm a. ~ \text{Only} ~(\mathrm I)\rm \qquad \mathrm b. ~(I)~and~(II)\qquad \mathrm c. ~Only~(III) \qquad \mathrm d. ~Both~(I)~and~(III) \qquad \mathrm e. ~(I), (II),~and~(III) $$

2002 Tournament Of Towns, 3

Show that if the last digit of the number $x^2+xy+y^2$ is $0$ (where $x,y\in\mathbb{N}$ ) then last two digits are zero.

2008 Serbia National Math Olympiad, 5

The sequence $ (a_n)_{n\ge 1}$ is defined by $ a_1 \equal{} 3$, $ a_2 \equal{} 11$ and $ a_n \equal{} 4a_{n\minus{}1}\minus{}a_{n\minus{}2}$, for $ n \ge 3$. Prove that each term of this sequence is of the form $ a^2 \plus{} 2b^2$ for some natural numbers $ a$ and $ b$.

1987 Romania Team Selection Test, 11

Let $P(X,Y)=X^2+2aXY+Y^2$ be a real polynomial where $|a|\geq 1$. For a given positive integer $n$, $n\geq 2$ consider the system of equations: \[ P(x_1,x_2) = P(x_2,x_3) = \ldots = P(x_{n-1},x_n) = P(x_n,x_1) = 0 . \] We call two solutions $(x_1,x_2,\ldots,x_n)$ and $(y_1,y_2,\ldots,y_n)$ of the system to be equivalent if there exists a real number $\lambda \neq 0$, $x_1=\lambda y_1$, $\ldots$, $x_n= \lambda y_n$. How many nonequivalent solutions does the system have? [i]Mircea Becheanu[/i]

2002 All-Russian Olympiad Regional Round, 9.2

A monic quadratic polynomial $f$ with integer coefficients attains prime values at three consecutive integer points.show that it attains a prime value at some other integer point as well.

1995 Niels Henrik Abels Math Contest (Norwegian Math Olympiad) Round 2, 8

Tags: quadratic
Let $ f(x) \equal{} x \minus{} \frac {1}{x}.$ How many different solutions are there to the equation $ f(f(f(x))) \equal{} 1$? A. 1 B. 2 C. 3 D. 6 E. 8

2011 NIMO Problems, 14

In circle $\theta_1$ with radius $1$, circles $\phi_1, \phi_2, \dots, \phi_8$, with equal radii, are drawn such that for $1 \le i \le 8$, $\phi_i$ is tangent to $\omega_1$, $\phi_{i-1}$, and $\phi_{i+1}$, where $\phi_0 = \phi_8$ and $\phi_1 = \phi_9$. There exists a circle $\omega_2$ such that $\omega_1 \neq \omega_2$ and $\omega_2$ is tangent to $\phi_i$ for $1 \le i \le 8$. The radius of $\omega_2$ can be expressed in the form $a - b\sqrt{c} -d\sqrt{e - \sqrt{f}} + g \sqrt{h - j \sqrt{k}}$ such that $a, b, \dots, k$ are positive integers and the numbers $e, f, k, \gcd(h, j)$ are squarefree. What is $a+b+c+d+e+f+g+h+j+k$. [i]Proposed by Eugene Chen [/i]

2004 Italy TST, 3

Find all functions $f:\mathbb{N}\rightarrow \mathbb{N}$ such that for all $m,n\in\mathbb{N}$, \[(2^m+1)f(n)f(2^mn)=2^mf(n)^2+f(2^mn)^2+(2^m-1)^2n. \]

2002 AMC 10, 11

Let $P(x)=kx^3+2k^2x^2+k^3$. Find the sum of all real numbers $k$ for which $x-2$ is a factor of $P(x)$. $\textbf{(A) }-8\qquad\textbf{(B) }-4\qquad\textbf{(C) }0\qquad\textbf{(D) }5\qquad\textbf{(E) }8$

2023 All-Russian Olympiad, 1

Tags: algebra , quadratic
Given are two monic quadratics $f(x), g(x)$ such that $f, g, f+g$ have two distinct real roots. Suppose that the difference of the roots of $f$ is equal to the difference of the roots of $g$. Prove that the difference of the roots of $f+g$ is not bigger than the above common difference.

2011 Canadian Students Math Olympiad, 2

For a fixed positive integer $k$, prove that there exist infinitely many primes $p$ such that there is an integer $w$, where $w^2-1$ is not divisible by $p$, and the order of $w$ in modulus $p$ is the same as the order of $w$ in modulus $p^k$. [i]Author: James Rickards[/i]