This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

VMEO II 2005, 9

On a board with $64$ ($8 \times 8$) squares, find a way to arrange $9$ queens and $ 1$ king so that every queen cannot capture another queen.

2018 Peru Cono Sur TST, 6

Let $n$ be a positive integer. In an $n \times n$ board, two opposite sides have been joined, forming a cylinder. Determine whether it is possible to place $n$ queens on the board such that no two threaten each other when: $a)\:$ $n=14$. $b)\:$ $n=15$.