This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2013 IFYM, Sozopol, 6

Prove that for each natural number $k$ there exists a natural number $n(k)$, such that for each $m\geq n(k)$ and each set $M$ of $m$ points in the plane, there can be chosen $k$ triangles, so that each has an angle greater than $120^\circ$.