This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 307

2022 Saudi Arabia BMO + EGMO TST, 2.1

Define $a_0 = 2$ and $a_{n+1} = a^2_n + a_n -1$ for $n \ge 0$. Prove that $a_n$ is coprime to $2n + 1$ for all $n \in N$.

2020 Spain Mathematical Olympiad, 2

Consider the succession of integers $\{f(n)\}_{n=1}^{\infty}$ defined as: $\bullet$ $f(1) = 1$. $\bullet$ $f(n) = f(n/2)$ if $n$ is even. $\bullet$ If $n > 1$ odd and $f(n-1)$ odd, then $f(n) = f(n-1)-1$. $\bullet$ If $n > 1$ odd and $f(n-1)$ even, then $f(n) = f(n-1)+1$. a) Compute $f(2^{2020}-1)$. b) Prove that $\{f(n)\}_{n=1}^{\infty}$ is not periodical, that is, there do not exist positive integers $t$ and $n_0$ such that $f(n+t) = f(n)$ for all $n \geq n_0$.

1983 IMO Shortlist, 7

Let $a$ be a positive integer and let $\{a_n\}$ be defined by $a_0 = 0$ and \[a_{n+1 }= (a_n + 1)a + (a + 1)a_n + 2 \sqrt{a(a + 1)a_n(a_n + 1)} \qquad (n = 1, 2 ,\dots ).\] Show that for each positive integer $n$, $a_n$ is a positive integer.

2011 Grand Duchy of Lithuania, 2

Let $n \ge 2$ be a natural number and suppose that positive numbers $a_0,a_1,...,a_n$ satisfy the equality $(a_{k-1}+a_{k})(a_{k}+a_{k+1})=a_{k-1}-a_{k+1}$ for each $k =1,2,...,n -1$. Prove that $a_n< \frac{1}{n-1}$

2017 Federal Competition For Advanced Students, P2, 3

Let $(a_n)_{n\ge 0}$ be the sequence of rational numbers with $a_0 = 2016$ and $a_{n+1} = a_n + \frac{2}{a_n}$ for all $n \ge 0$. Show that the sequence does not contain a square of a rational number. Proposed by Theresia Eisenkölbl

2010 Korea Junior Math Olympiad, 4

Let there be a sequence $a_n$ such that $a_1 = 2,a_2 = 0, a_3 = 1, a_4 = 0$, and for $n \ge 1, a_{n+4}$ is the remainder when $a_n + 2a_{n+1} + 3a_{n+2} + 4a_{n+3}$ is divided by $9$. Prove that there are no positive integer $k$ such that $$a_k = 0, a_{k+1} = 1, a_{k+2} = 0,a_{k+3} = 2.$$

1980 Yugoslav Team Selection Test, Problem 3

A sequence $(x_n)$ satisfies $x_{n+1}=\frac{x_n^2+a}{x_{n-1}}$ for all $n\in\mathbb N$. Prove that if $x_0,x_1$, and $\frac{x_0^2+x_1^2+a}{x_0x_1}$ are integers, then all the terms of sequence $(x_n)$ are integers.

1989 French Mathematical Olympiad, Problem 4

For natural numbers $x_1,\ldots,x_k$, let $[x_k,\ldots,x_1]$ be defined recurrently as follows: $[x_2,x_1]=x_2^{x_1}$ and, for $k\ge3$, $[x_k,x_{k-1},\ldots,x_1]=x_k^{[x_{k-1},\ldots,x_1]}$. (a) Let $3\le a_1\le a_2\le\ldots\le a_n$be integers. For a permutation $\sigma$ of the set $\{1,2,\ldots,n\}$, we set $P(\sigma)=[a_{\sigma(n)},a_{\sigma(n-1)},\ldots,a_{\sigma(1)}]$. Find the permutations $\sigma$ for which $P(\sigma)$ is minimal or maximal. (b) Find all integers $a,b,c,d$, greater than or equal to $2$, for which $[178,9]\le[a,b,c,d]\le[198,9]$.

2003 Olympic Revenge, 2

Let $x_n$ the sequence defined by any nonnegatine integer $x_0$ and $x_{n+1}=1+\prod_{0 \leq i \leq n}{x_i}$ Show that there exists prime $p$ such that $p\not|x_n$ for any $n$.

1980 IMO Longlists, 19

Find the greatest natural number $n$ such there exist natural numbers $x_{1}, x_{2}, \ldots, x_{n}$ and natural $a_{1}< a_{2}< \ldots < a_{n-1}$ satisfying the following equations for $i =1,2,\ldots,n-1$: \[x_{1}x_{2}\ldots x_{n}= 1980 \quad \text{and}\quad x_{i}+\frac{1980}{x_{i}}= a_{i}.\]

1990 IMO Shortlist, 18

Let $ a, b \in \mathbb{N}$ with $ 1 \leq a \leq b,$ and $ M \equal{} \left[\frac {a \plus{} b}{2} \right].$ Define a function $ f: \mathbb{Z} \mapsto \mathbb{Z}$ by \[ f(n) \equal{} \begin{cases} n \plus{} a, & \text{if } n \leq M, \\ n \minus{} b, & \text{if } n >M. \end{cases} \] Let $ f^1(n) \equal{} f(n),$ $ f_{i \plus{} 1}(n) \equal{} f(f^i(n)),$ $ i \equal{} 1, 2, \ldots$ Find the smallest natural number $ k$ such that $ f^k(0) \equal{} 0.$

1983 IMO Longlists, 19

Let $a$ be a positive integer and let $\{a_n\}$ be defined by $a_0 = 0$ and \[a_{n+1 }= (a_n + 1)a + (a + 1)a_n + 2 \sqrt{a(a + 1)a_n(a_n + 1)} \qquad (n = 1, 2 ,\dots ).\] Show that for each positive integer $n$, $a_n$ is a positive integer.

2020 Kyiv Mathematical Festival, 1.1

(a) Find the numbers $a_0,. . . , a_{100}$, such that $a_0 = 0, a_{100} = 1$ and for all $k = 1,. . . , 99$ : $$a_k = \frac12 a_{k- 1} + \frac12 a_{k+1 }$$ (b) Find the numbers $a_0,. . . , a_{100}$, such that $a_0 = 0, a_{100} = 1$ and for all $k = 1,. . . , 99$ : $$a_k = 1+\frac12 a_{k- 1} + \frac12 a_{k+1 }$$.

1971 IMO Shortlist, 1

Consider a sequence of polynomials $P_0(x), P_1(x), P_2(x), \ldots, P_n(x), \ldots$, where $P_0(x) = 2, P_1(x) = x$ and for every $n \geq 1$ the following equality holds: \[P_{n+1}(x) + P_{n-1}(x) = xP_n(x).\] Prove that there exist three real numbers $a, b, c$ such that for all $n \geq 1,$ \[(x^2 - 4)[P_n^2(x) - 4] = [aP_{n+1}(x) + bP_n(x) + cP_{n-1}(x)]^2.\]

1978 Polish MO Finals, 5

For a given real number $a$, define the sequence $(a_n)$ by $a_1 = a$ and $$a_{n+1} =\begin{cases} \dfrac12 \left(a_n -\dfrac{1}{a_n}\right) \,\,\, if \,\,\, a_n \ne 0, \\ 0 \,\,\, if \,\,\, a_n = 0 \end{cases}$$ Prove that the sequence $(a_n)$ contains infinitely many nonpositive terms.

2001 IMO Shortlist, 3

Let $ a_1 \equal{} 11^{11}, \, a_2 \equal{} 12^{12}, \, a_3 \equal{} 13^{13}$, and $ a_n \equal{} |a_{n \minus{} 1} \minus{} a_{n \minus{} 2}| \plus{} |a_{n \minus{} 2} \minus{} a_{n \minus{} 3}|, n \geq 4.$ Determine $ a_{14^{14}}$.

2007 India IMO Training Camp, 1

A sequence of real numbers $ a_{0},\ a_{1},\ a_{2},\dots$ is defined by the formula \[ a_{i \plus{} 1} \equal{} \left\lfloor a_{i}\right\rfloor\cdot \left\langle a_{i}\right\rangle\qquad\text{for}\quad i\geq 0; \]here $a_0$ is an arbitrary real number, $\lfloor a_i\rfloor$ denotes the greatest integer not exceeding $a_i$, and $\left\langle a_i\right\rangle=a_i-\lfloor a_i\rfloor$. Prove that $a_i=a_{i+2}$ for $i$ sufficiently large. [i]Proposed by Harmel Nestra, Estionia[/i]

1998 North Macedonia National Olympiad, 5

The sequence $(a_n)$ is defined by $a_1 =\sqrt2$ and $a_{n+1} =\sqrt{2-\sqrt{4-a_n^2}}$. Let $b_n =2^{n+1}a_n$. Prove that $b_n \le 7$ and $b_n < b_{n+1}$ for all $n$.

2018 MMATHS, 4

A sequence of integers fsng is defined as follows: fix integers $a$, $b$, $c$, and $d$, then set $s_1 = a$, $s_2 = b$, and $$s_n = cs_{n-1} + ds_{n-2}$$ for all $n \ge 3$. Create a second sequence $\{t_n\}$ by defining each $t_n$ to be the remainder when $s_n$ is divided by $2018$ (so we always have $0 \le t_n \le 2017$). Let $N = (2018^2)!$. Prove that $t_N = t_{2N}$ regardless of the choices of $a$, $b$, $c$, and $d$.

1994 IMO Shortlist, 4

Define the sequences $ a_n, b_n, c_n$ as follows. $ a_0 \equal{} k, b_0 \equal{} 4, c_0 \equal{} 1$. If $ a_n$ is even then $ a_{n \plus{} 1} \equal{} \frac {a_n}{2}$, $ b_{n \plus{} 1} \equal{} 2b_n$, $ c_{n \plus{} 1} \equal{} c_n$. If $ a_n$ is odd, then $ a_{n \plus{} 1} \equal{} a_n \minus{} \frac {b_n}{2} \minus{} c_n$, $ b_{n \plus{} 1} \equal{} b_n$, $ c_{n \plus{} 1} \equal{} b_n \plus{} c_n$. Find the number of positive integers $ k < 1995$ such that some $ a_n \equal{} 0$.

2018 Saudi Arabia GMO TST, 1

Let $\{x_n\}$ be a sequence defined by $x_1 = 2$ and $x_{n+1} = x_n^2 - x_n + 1$ for $n \ge 1$. Prove that $$1 -\frac{1}{2^{2^{n-1}}} < \frac{1}{x_1}+\frac{1}{x_2}+ ... +\frac{1}{x_n}< 1 -\frac{1}{2^{2^n}}$$ for all $n$

1984 IMO Longlists, 16

The harmonic table is a triangular array: $1$ $\frac 12 \qquad \frac 12$ $\frac 13 \qquad \frac 16 \qquad \frac 13$ $\frac 14 \qquad \frac 1{12} \qquad \frac 1{12} \qquad \frac 14$ Where $a_{n,1} = \frac 1n$ and $a_{n,k+1} = a_{n-1,k} - a_{n,k}$ for $1 \leq k \leq n-1.$ Find the harmonic mean of the $1985^{th}$ row.

1997 Singapore Team Selection Test, 3

Suppose the numbers $a_0, a_1, a_2, ... , a_n$ satisfy the following conditions: $a_0 =\frac12$, $a_{k+1} = a_k +\frac{1}{n}a_k^2$ for $k = 0, 1, ... , n - 1$. Prove that $1 - \frac{1}{n}< a_n < 1$

V Soros Olympiad 1998 - 99 (Russia), 10.6

Find the formula for the general term of the sequence an, for which $a_1 = 1$, $a_2 = 3$, $a_{n+1} = 3a_n-2a_{n-1}$ (you need to express an in terms of $n$).

2014 Contests, 3

The sequence $(a_n)$ is defined with the recursion $a_{n + 1} = 5a^6_n + 3a^3_{n-1} + a^2_{n-2}$ for $n\ge 2$ and the set of initial values $\{a_0, a_1, a_2\} = \{2013, 2014, 2015\}$. (That is, the initial values are these three numbers in any order.) Show that the sequence contains no sixth power of a natural number.