This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2021 Alibaba Global Math Competition, 16

Let $G$ be a finite group, and let $H_1, H_2 \subset G$ be two subgroups. Suppose that for any representation of $G$ on a finite-dimensional complex vector space $V$, one has that \[\text{dim} V^{H_1}=\text{dim} V^{H_2},\] where $V^{H_i}$ is the subspace of $H_i$-invariant vectors in $V$ ($i=1,2$). Prove that \[Z(G) \cap H_1=Z(G) \cap H_2.\] Here $Z(G)$ denotes the center of $G$.