This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

2007 Bulgarian Autumn Math Competition, Problem 10.1

Find all integers $b$ and $c$ for which the equation $x^2-bx+c=0$ has two real roots $x_{1}$ and $x_{2}$ satisfying $x_{1}^2+x_{2}^2=5$.

2016 Lusophon Mathematical Olympiad, 3

Suppose a real number $a$ is a root of a polynomial with integer coefficients $P(x)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0$. Let $G=|a_n|+|a_{n-1}|+...+|a_1|+|a_0|$. We say that $G$ is a [i]gingado [/i] of $a$. For example, as $2$ is root of $P(x)=x^2-x-2$, $G=|1|+|-1|+|-2|=4$, we say that $4$ is a [i]gingado[/i] of $2$. What is the fourth largest real number $a$ such that $3$ is a [i]gingado [/i] of $a$?