This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1239

2018 IMO, 2

Find all integers $n \geq 3$ for which there exist real numbers $a_1, a_2, \dots a_{n + 2}$ satisfying $a_{n + 1} = a_1$, $a_{n + 2} = a_2$ and $$a_ia_{i + 1} + 1 = a_{i + 2},$$ for $i = 1, 2, \dots, n$. [i]Proposed by Patrik Bak, Slovakia[/i]

2004 VJIMC, Problem 3

Denote by $B(c,r)$ the open disk of center $c$ and radius $r$ in the plane. Decide whether there exists a sequence $\{z_n\}^\infty_{n=1}$ of points in $\mathbb R^2$ such that the open disks $B(z_n,1/n)$ are pairwise disjoint and the sequence $\{z_n\}^\infty_{n=1}$ is convergent.

1992 IMO Longlists, 18

Fibonacci numbers are defined as follows: $F_0 = F_1 = 1, F_{n+2} = F_{n+1}+F_n, n \geq 0$. Let $a_n$ be the number of words that consist of $n$ letters $0$ or $1$ and contain no two letters $1$ at distance two from each other. Express $a_n$ in terms of Fibonacci numbers.

2017 Ukraine Team Selection Test, 9

There're two positive inegers $a_1<a_2$. For every positive integer $n \geq 3$ let $a_n$ be the smallest integer that bigger than $a_{n-1}$ and such that there's unique pair $1\leq i< j\leq n-1$ such that this number equals to $a_i+a_j$. Given that there're finitely many even numbers in this sequence. Prove that sequence $\{a_{n+1}-a_n \}$ is periodic starting from some element.

2007 India IMO Training Camp, 1

A sequence of real numbers $ a_{0},\ a_{1},\ a_{2},\dots$ is defined by the formula \[ a_{i \plus{} 1} \equal{} \left\lfloor a_{i}\right\rfloor\cdot \left\langle a_{i}\right\rangle\qquad\text{for}\quad i\geq 0; \]here $a_0$ is an arbitrary real number, $\lfloor a_i\rfloor$ denotes the greatest integer not exceeding $a_i$, and $\left\langle a_i\right\rangle=a_i-\lfloor a_i\rfloor$. Prove that $a_i=a_{i+2}$ for $i$ sufficiently large. [i]Proposed by Harmel Nestra, Estionia[/i]

1980 IMO, 2

Let $\{x_n\}$ be a sequence of natural numbers such that \[(a) 1 = x_1 < x_2 < x_3 < \ldots; \quad (b) x_{2n+1} \leq 2n \quad \forall n.\] Prove that, for every natural number $k$, there exist terms $x_r$ and $x_s$ such that $x_r - x_s = k.$

2018 Estonia Team Selection Test, 10

A sequence of positive real numbers $a_1, a_2, a_3, ... $ satisfies $a_n = a_{n-1} + a_{n-2}$ for all $n \ge 3$. A sequence $b_1, b_2, b_3, ...$ is defined by equations $b_1 = a_1$ , $b_n = a_n + (b_1 + b_3 + ...+ b_{n-1})$ for even $n > 1$ , $b_n = a_n + (b_2 + b_4 + ... +b_{n-1})$ for odd $n > 1$. Prove that if $n\ge 3$, then $\frac13 < \frac{b_n}{n \cdot a_n} < 1$

2007 Balkan MO Shortlist, A8

Let $c>2$ and $a_0,a_1, \ldots$ be a sequence of real numbers such that \begin{align*} a_n = a_{n-1}^2 - a_{n-1} < \frac{1}{\sqrt{cn}} \end{align*} for any $n$ $\in$ $\mathbb{N}$. Prove, $a_1=0$

2022 Taiwan TST Round 3, N

Let $a_1,a_2,a_3,\ldots$ be an infinite sequence of positive integers such that $a_{n+2m}$ divides $a_{n}+a_{n+m}$ for all positive integers $n$ and $m.$ Prove that this sequence is eventually periodic, i.e. there exist positive integers $N$ and $d$ such that $a_n=a_{n+d}$ for all $n>N.$

2017 Purple Comet Problems, 16

Tags: sequence , algebra
Let $a_1 = 1 +\sqrt2$ and for each $n \ge 1$ de ne $a_{n+1} = 2 -\frac{1}{a_n}$. Find the greatest integer less than or equal to the product $a_1a_2a_3 ... a_{200}$.

2010 Germany Team Selection Test, 3

Find all positive integers $n$ such that there exists a sequence of positive integers $a_1$, $a_2$,$\ldots$, $a_n$ satisfying: \[a_{k+1}=\frac{a_k^2+1}{a_{k-1}+1}-1\] for every $k$ with $2\leq k\leq n-1$. [i]Proposed by North Korea[/i]

2021 Science ON all problems, 1

Tags: sequence , algebra
Consider the sequence $(a_n)_{n\ge 1}$ such that $a_1=1$ and $a_{n+1}=\sqrt{a_n+n^2}$, $\forall n\ge 1$. $\textbf{(a)}$ Prove that there is exactly one rational number among the numbers $a_1,a_2,a_3,\dots$. $\textbf{(b)}$ Consider the sequence $(S_n)_{n\ge 1}$ such that $$S_n=\sum_{i=1}^n\frac{4}{\left (\left \lfloor a_{i+1}^2\right \rfloor-\left \lfloor a_i^2\right \rfloor\right)\left(\left \lfloor a_{i+2}^2\right \rfloor-\left \lfloor a_{i+1}^2\right \rfloor\right)}.$$ Prove that there exists an integer $N$ such that $S_n>0.9$, $\forall n>N$. [i] (Stefan Obadă)[/i]

2001 Moldova National Olympiad, Problem 2

Let $m\ge2$ be an integer. The sequence $(a_n)_{n\in\mathbb N}$ is defined by $a_0=0$ and $a_n=\left\lfloor\frac nm\right\rfloor+a_{\left\lfloor\frac nm\right\rfloor}$ for all $n$. Determine $\lim_{n\to\infty}\frac{a_n}n$.

V Soros Olympiad 1998 - 99 (Russia), 10.6

Find the formula for the general term of the sequence an, for which $a_1 = 1$, $a_2 = 3$, $a_{n+1} = 3a_n-2a_{n-1}$ (you need to express an in terms of $n$).

1968 All Soviet Union Mathematical Olympiad, 113

The sequence $a_1,a_2,...,a_n$ satisfies the following conditions: $$a_1=0, |a_2|=|a_1+1|, ..., |a_n|=|a_{n-1}+1|.$$ Prove that $$(a_1+a_2+...+a_n)/n \ge -1/2$$

1966 IMO Longlists, 42

Given a finite sequence of integers $a_{1},$ $a_{2},$ $...,$ $a_{n}$ for $n\geq 2.$ Show that there exists a subsequence $a_{k_{1}},$ $a_{k_{2}},$ $...,$ $a_{k_{m}},$ where $1\leq k_{1}\leq k_{2}\leq...\leq k_{m}\leq n,$ such that the number $a_{k_{1}}^{2}+a_{k_{2}}^{2}+...+a_{k_{m}}^{2}$ is divisible by $n.$ [b]Note by Darij:[/b] Of course, the $1\leq k_{1}\leq k_{2}\leq ...\leq k_{m}\leq n$ should be understood as $1\leq k_{1}<k_{2}<...<k_{m}\leq n;$ else, we could take $m=n$ and $k_{1}=k_{2}=...=k_{m},$ so that the number $a_{k_{1}}^{2}+a_{k_{2}}^{2}+...+a_{k_{m}}^{2}=n^{2}a_{k_{1}}^{2}$ will surely be divisible by $n.$

2016 Saint Petersburg Mathematical Olympiad, 7

A sequence of $N$ consecutive positive integers is called [i]good [/i] if it is possible to choose two of these numbers so that their product is divisible by the sum of the other $N-2$ numbers. For which $N$ do there exist infinitely many [i]good [/i] sequences?

1981 Austrian-Polish Competition, 2

The sequence $a_0, a_1, a_2, ...$ is defined by $a_{n+1} = a^2_n + (a_n - 1)^2$ for $n \ge 0$. Find all rational numbers $a_0$ for which there exist four distinct indices $k, m, p, q$ such that $a_q - a_p = a_m - a_k$.

2025 6th Memorial "Aleksandar Blazhevski-Cane", P3

A sequence of real numbers $(a_k)_{k \ge 0}$ is called [i]log-concave[/i] if for every $k \ge 1$, the inequality $a_{k - 1}a_{k + 1} \le a_k^2$ holds. Let $n, l \in \mathbb{N}$. Prove that the sequence $(a_k)_{k \ge 0}$ with general term \[a_k = \sum_{i = k}^{k + l} {n \choose i}\] is log-concave. Proposed by [i]Svetlana Poznanovikj[/i]

2002 IMO Shortlist, 2

Let $a_1,a_2,\ldots$ be an infinite sequence of real numbers, for which there exists a real number $c$ with $0\leq a_i\leq c$ for all $i$, such that \[\left\lvert a_i-a_j \right\rvert\geq \frac{1}{i+j} \quad \text{for all }i,\ j \text{ with } i \neq j. \] Prove that $c\geq1$.

2004 Switzerland Team Selection Test, 8

Let $m$ be a fixed integer greater than $1$. The sequence $x_0$, $x_1$, $x_2$, $\ldots$ is defined as follows: \[x_i = \begin{cases}2^i&\text{if }0\leq i \leq m - 1;\\\sum_{j=1}^mx_{i-j}&\text{if }i\geq m.\end{cases}\] Find the greatest $k$ for which the sequence contains $k$ consecutive terms divisible by $m$ . [i]Proposed by Marcin Kuczma, Poland[/i]

2004 Gheorghe Vranceanu, 1

Find all infinite sequences of real numbers $ \left( a_n \right)_{n\ge 1} $ that verify, for any natural number $ n, $ the inequalities $$ \frac{1}{2\sqrt{a_{n+1}}} <\sqrt{n+1} -\sqrt{n} <\frac{1}{ 2\sqrt{a_n}} . $$

2019 Peru IMO TST, 4

Let $k\geq 0$ an integer. The sequence $a_0,\ a_1,\ a_2, \ a_3, \ldots$ is defined as follows: [LIST] [*] $a_0=k$ [/*] [*] For $n\geq 1$, we have that $a_n$ is the smallest integer greater than $a_{n-1}$ so that $a_n+a_{n-1}$ is a perfect square. [/*] [/LIST] Prove that there are exactly $\left \lfloor{\sqrt{2k}} \right \rfloor$ positive integers that cannot be written as the difference of two elements of such a sequence. [i]Note.[/i] If $x$ is a real number, $\left \lfloor{x} \right \rfloor$ denotes the greatest integer smaller or equal than $x$.

1980 IMO Shortlist, 14

Let $\{x_n\}$ be a sequence of natural numbers such that \[(a) 1 = x_1 < x_2 < x_3 < \ldots; \quad (b) x_{2n+1} \leq 2n \quad \forall n.\] Prove that, for every natural number $k$, there exist terms $x_r$ and $x_s$ such that $x_r - x_s = k.$

2024 Bangladesh Mathematical Olympiad, P4

Let $a_1, a_2, \ldots, a_{11}$ be integers. Prove that there exist numbers $b_1, b_2, \ldots, b_{11}$ such that [list] [*] $b_i$ is equal to $-1,0$ or $1$ for all $i \in \{1, 2,\dots, 11\}$. [*] all numbers can't be zero at a time. [*] the number $N=a_1b_1+a_2b_2+\ldots+a_{11}b_{11}$ is divisible by $2024$. [/list]