Found problems: 1239
2019 Saudi Arabia BMO TST, 2
Let sequences of real numbers $(x_n)$ and $(y_n)$ satisfy $x_1 = y_1 = 1$ and $x_{n+1} =\frac{x_n + 2}{x_n + 1}$ and $y_{n+1} = \frac{y_n^2 + 2}{2y_n}$ for $n = 1,2, ...$ Prove that $y_{n+1} = x_{2^n}$ holds for $n =0, 1,2, ... $
2017 Baltic Way, 1
Let $a_0,a_1,a_2,...$ be an infinite sequence of real numbers satisfying $\frac{a_{n-1}+a_{n+1}}{2}\geq a_n$ for all positive integers $n$. Show that $$\frac{a_0+a_{n+1}}{2}\geq \frac{a_1+a_2+...+a_n}{n}$$ holds for all positive integers $n$.
1995 IMO, 4
Find the maximum value of $ x_{0}$ for which there exists a sequence $ x_{0},x_{1}\cdots ,x_{1995}$ of positive reals with $ x_{0} \equal{} x_{1995}$, such that
\[ x_{i \minus{} 1} \plus{} \frac {2}{x_{i \minus{} 1}} \equal{} 2x_{i} \plus{} \frac {1}{x_{i}},
\]
for all $ i \equal{} 1,\cdots ,1995$.
1976 All Soviet Union Mathematical Olympiad, 223
The natural numbers $x_1$ and $x_2$ are less than $1000$. We construct a sequence:
$$x_3 = |x_1 - x_2|$$
$$x_4 = min \{ |x_1 - x_2|, |x_1 - x_3|, |x_2 - x_3|\}$$
$$...$$
$$x_k = min \{ |x_i - x_j|, 0 <i < j < k\}$$
$$...$$
Prove that $x_{21} = 0$.
Kvant 2019, M2552
Let $a_1,a_2, \cdots$ be a sequence of integers that satisfies: $a_1=1$ and $a_{n+1}=a_n+a_{\lfloor \sqrt{n} \rfloor} , \forall n\geq 1 $. Prove that for all positive $k$, there is $m \geq 1$ such that $k \mid a_m$.
2021-IMOC, N3
Define the function $f:\mathbb N_{>1}\to\mathbb N_{>1}$ such that $f(x)$ is the greatest prime factor of $x$. A sequence of positive integers $\{a_n\}$ satisfies $a_1=M>1$ and
$$a_{n+1}=\begin{cases}a_n-f(a_n)&\text{if }a_n\text{ is composite.}\\a_n+k&\text{otherwise.}\end{cases}$$
Show that for any positive integers $M,k$, the sequence $\{a_n\}$ is bounded.
(TAN768092100853)
2007 Germany Team Selection Test, 1
A sequence of real numbers $ a_{0},\ a_{1},\ a_{2},\dots$ is defined by the formula
\[ a_{i \plus{} 1} \equal{} \left\lfloor a_{i}\right\rfloor\cdot \left\langle a_{i}\right\rangle\qquad\text{for}\quad i\geq 0;
\]here $a_0$ is an arbitrary real number, $\lfloor a_i\rfloor$ denotes the greatest integer not exceeding $a_i$, and $\left\langle a_i\right\rangle=a_i-\lfloor a_i\rfloor$. Prove that $a_i=a_{i+2}$ for $i$ sufficiently large.
[i]Proposed by Harmel Nestra, Estionia[/i]
2004 Gheorghe Vranceanu, 1
Define a finite sequence $ \left( s_i \right)_{1\le i\le 2004} $ with $ s_0+2=s_1+1=s_2=2 $ and the recurrence relation
$$ s_n=1+s_{n-1} +s_{n-2} -s_{n-3} . $$
Calculate its last element.
1962 All-Soviet Union Olympiad, 13
Given are $a_0,a_1, ... , a_n$, satisfying $a_0=a_n = 0$, and $a_{k-1} - 2a_k+a_{k+1}\ge 0$ for $k=0, 1, ... , n-1$. Prove that all the numbers are negative or zero.
2014 Hanoi Open Mathematics Competitions, 5
The first two terms of a sequence are $2$ and $3$. Each next term thereafter is the sum of the nearestly previous two terms if their sum is not greather than $10, 0$ otherwise. The $2014$th term is:
(A): $0$, (B): $8$, (C): $6$, (D): $4$, (E) None of the above.
2018 Turkey Team Selection Test, 6
$a_0, a_1, \ldots, a_{100}$ and $b_1, b_2,\ldots, b_{100}$ are sequences of real numbers, for which the property holds: for all $n=0, 1, \ldots, 99$, either
$$a_{n+1}=\frac{a_n}{2} \quad \text{and} \quad b_{n+1}=\frac{1}{2}-a_n,$$
or
$$a_{n+1}=2a_n^2 \quad \text{and} \quad b_{n+1}=a_n.$$
Given $a_{100}\leq a_0$, what is the maximal value of $b_1+b_2+\cdots+b_{100}$?
2019 Jozsef Wildt International Math Competition, W. 8
Let $(a_n)_{n\geq 1}$ be a positive real sequence given by $a_n=\sum \limits_{k=1}^n \frac{1}{k}$. Compute $$\lim \limits_{n \to \infty}e^{-2a_n} \sum \limits_{k=1}^n \left \lfloor \left(\sqrt[2k]{k!}+\sqrt[2(k+1)]{(k+1)!}\right)^2 \right \rfloor$$where we denote by $\lfloor x\rfloor$ the integer part of $x$.
2020 MMATHS, I8
Let $a_1, a_2, \ldots$ and $b_1, b_2, \ldots$ be sequences such that $a_ib_i - a_i - b_i = 0$ and $a_{i+1} = \frac{2-a_ib_i}{1-b_i}$ for all $i \ge 1$. If $a_1 = 1 + \frac{1}{\sqrt[4]{2}}$, then what is $b_{6}$?
[i]Proposed by Andrew Wu[/i]
2006 Petru Moroșan-Trident, 1
What relationship should be between the positive real numbers $ a $ and $ b $ such that the sequence $ \left(\left( a\sqrt[n]{n} +b \right)^{\frac{n}{\ln n}}\right)_{n\ge 1} $ has a nonzero and finite limit? For such $ a,b, $ calculate the limit of this sequence.
[i]Ion Cucurezeanu[/i]
1984 Putnam, B1
Let $n$ be a positive integer, and define $f(n)=1!+2!+\ldots+n!$. Find polynomials $P$ and $Q$ such that
$$f(n+2)=P(n)f(n+1)+Q(n)f(n)$$for all $n\ge1$.
2011 VTRMC, Problem 2
A sequence $(a_n)$ is defined by $a_0=-1,a_1=0$, and $a_{n+1}=a_n^2-(n+1)^2a_{n-1}-1$ for all positive integers $n$. Find $a_{100}$.
2021 SYMO, Q3
Let $a_1,a_2,a_3,\dots$ be an infinite sequence of non-zero reals satisfying \[a_{i} = \frac{a_{i-1}a_{i-2}-2}{a_{i-3}}\]for all $i\geq 4$. Determine all positive integers $n$ such that if $a_1,a_2,\dots,a_n$ are integers, then all elements of the sequence are integers.
2004 Unirea, 3
[b]a)[/b] Prove that for any natural numbers $ n, $ the inequality
$$ e^{2-1/n} >\prod_{k=1}^n (1+1/k^2) $$
holds.
[b]b)[/b] Prove that the sequence $ \left( a_n \right)_{n\ge 1} $ with $ a_1=1 $ and defined by the recursive relation $ a_{n+1}=\frac{2}{n^2}\sum_{k=1}^n ka_k $ is nondecreasing. Is it convergent?
1971 IMO Shortlist, 9
Let $T_k = k - 1$ for $k = 1, 2, 3,4$ and
\[T_{2k-1} = T_{2k-2} + 2^{k-2}, T_{2k} = T_{2k-5} + 2^k \qquad (k \geq 3).\]
Show that for all $k$,
\[1 + T_{2n-1} = \left[ \frac{12}{7}2^{n-1} \right] \quad \text{and} \quad 1 + T_{2n} = \left[ \frac{17}{7}2^{n-1} \right],\]
where $[x]$ denotes the greatest integer not exceeding $x.$
1977 IMO Longlists, 28
Let $n$ be an integer greater than $1$. Define
\[x_1 = n, y_1 = 1, x_{i+1} =\left[ \frac{x_i+y_i}{2}\right] , y_{i+1} = \left[ \frac{n}{x_{i+1}}\right], \qquad \text{for }i = 1, 2, \ldots\ ,\]
where $[z]$ denotes the largest integer less than or equal to $z$. Prove that
\[ \min \{x_1, x_2, \ldots, x_n \} =[ \sqrt n ]\]
2016 Taiwan TST Round 1, 1
Determine all positive integers $M$ such that the sequence $a_0, a_1, a_2, \cdots$ defined by \[ a_0 = M + \frac{1}{2} \qquad \textrm{and} \qquad a_{k+1} = a_k\lfloor a_k \rfloor \quad \textrm{for} \, k = 0, 1, 2, \cdots \] contains at least one integer term.
1995 French Mathematical Olympiad, Problem 2
Study the convergence of a sequence defined by $u_0\ge0$ and $u_{n+1}=\sqrt{u_n}+\frac1{n+1}$ for all $n\in\mathbb N_0$.
1973 IMO, 3
Let $a_1, \ldots, a_n$ be $n$ positive numbers and $0 < q < 1.$ Determine $n$ positive numbers $b_1, \ldots, b_n$ so that:
[i]a.)[/i] $ a_{k} < b_{k}$ for all $k = 1, \ldots, n,$
[i]b.)[/i] $q < \frac{b_{k+1}}{b_{k}} < \frac{1}{q}$ for all $k = 1, \ldots, n-1,$
[i]c.)[/i] $\sum \limits^n_{k=1} b_k < \frac{1+q}{1-q} \cdot \sum \limits^n_{k=1} a_k.$
2009 Postal Coaching, 1
Let $a_1, a_2, a_3, . . . , a_n, . . . $ be an infinite sequence of natural numbers in which $a_1$ is not divisible by $5$. Suppose $a_{n+1} = a_n + b_n$ where bn is the last digit of $a_n$, for every $n$. Prove that the sequence $\{a_n\}$ contains infinitely many powers of 2.
1997 Singapore Team Selection Test, 3
Suppose the numbers $a_0, a_1, a_2, ... , a_n$ satisfy the following conditions:
$a_0 =\frac12$, $a_{k+1} = a_k +\frac{1}{n}a_k^2$ for $k = 0, 1, ... , n - 1$.
Prove that $1 - \frac{1}{n}< a_n < 1$