This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1239

2016 Saudi Arabia Pre-TST, 2.2

Tags: sequence , algebra
Given four numbers $x, y, z, t$, let $(a, b, c, d)$ be a permutation of $(x, y, z, t)$ and set $x_1 =|a- b|$, $y_1 = |b-c|$, $z_1 = |c-d|$, and $t_1 = |d -a|$. From $x_1, y_1, z_1, t_1$, form in the same fashion the numbers $x_2, y_2, z_2, t_2$, and so on. It is known that $x_n = x, y_n = y, z_n = z, t_n = t$ for some $n$. Find all possible values of $(x, y, z, t)$.

2008 IMO Shortlist, 3

Let $ a_0$, $ a_1$, $ a_2$, $ \ldots$ be a sequence of positive integers such that the greatest common divisor of any two consecutive terms is greater than the preceding term; in symbols, $ \gcd (a_i, a_{i \plus{} 1}) > a_{i \minus{} 1}$. Prove that $ a_n\ge 2^n$ for all $ n\ge 0$. [i]Proposed by Morteza Saghafian, Iran[/i]

2020 AMC 10, 21

Tags: sequence
There exists a unique strictly increasing sequence of nonnegative integers $a_1 < a_2 < \dots < a_k$ such that \[\frac{2^{289}+1}{2^{17}+1} = 2^{a_1} + 2^{a_2} + \dots + 2^{a_k}.\] What is $k?$ $\textbf{(A) } 117 \qquad \textbf{(B) } 136 \qquad \textbf{(C) } 137 \qquad \textbf{(D) } 273 \qquad \textbf{(E) } 306$

1985 IMO, 6

For every real number $x_1$, construct the sequence $x_1,x_2,\ldots$ by setting: \[ x_{n+1}=x_n(x_n+{1\over n}). \] Prove that there exists exactly one value of $x_1$ which gives $0<x_n<x_{n+1}<1$ for all $n$.

1954 Miklós Schweitzer, 2

Tags: sequence , series
[b]2.[/b] Show that the series $\sum_{n=1}^{\infty}\frac{1}{n}sin(asin(\frac{2n\pi}{N}))e^{bcos(\frac{2n\pi}{N})}$ is convergent for every positive integer N and any real numbers a and b. [b](S. 25)[/b]

2024 Middle European Mathematical Olympiad, 4

A finite sequence $x_1,\dots,x_r$ of positive integers is a [i]palindrome[/i] if $x_i=x_{r+1-i}$ for all integers $1 \le i \le r$. Let $a_1,a_2,\dots$ be an infinite sequence of positive integers. For a positive integer $j \ge 2$, denote by $a[j]$ the finite subsequence $a_1,a_2,\dots,a_{j-1}$. Suppose that there exists a strictly increasing infinite sequence $b_1,b_2,\dots$ of positive integers such that for every positive integer $n$, the subsequence $a[b_n]$ is a palindrome and $b_{n+2} \le b_{n+1}+b_n$. Prove that there exists a positive integer $T$ such that $a_i=a_{i+T}$ for every positive integer $i$.

2025 Turkey Team Selection Test, 8

A positive real number sequence $a_1, a_2, a_3,\dots $ and a positive integer \(s\) is given. Let $f_n(0) = \frac{a_n+\dots+a_1}{n}$ and for each $0<k<n$ \[f_n(k)=\frac{a_n+\dots+a_{k+1}}{n-k}-\frac{a_k+\dots+a_1}{k}\] Then for every integer $n\geq s,$ the condition \[a_{n+1}=\max_{0\leq k<n}(f_n(k))\] is satisfied. Prove that this sequence must be eventually constant.

2023 Romania Team Selection Test, P5

Tags: sequence , algebra
Let $(a_n)_{n\geq 1}$ be a sequence of positive real numbers with the property that $$(a_{n+1})^2 + a_na_{n+2} \leq a_n + a_{n+2}$$ for all positive integers $n$. Show that $a_{2022}\leq 1$.

1973 Swedish Mathematical Competition, 2

The Fibonacci sequence $f_1,f_2,f_3,\dots$ is defined by $f_1=f_2=1$, $f_{n+2}=f_{n+1}+f_n$. Find all $n$ such that $f_n = n^2$.

2010 Junior Balkan Team Selection Tests - Romania, 2

Show that: a) There is a sequence of non-zero natural numbers $a_1, a_2, ...$ uniquely determined, so that: $n = \sum _ {d | n} a _ d$ for whatever $n \in N ^ {*}$ . b) There is a sequence of non-zero natural numbers $b_1, b_2, ...$ uniquely determined, so that: $n = \prod _ {d | n} b _ d$ for whatever $n \in N ^ {*}$ . Note: The sum from a), respectively the product from b), are made after all the natural divisors $d$ of the number $n$ , including $1$ and $n$ .

1976 IMO Shortlist, 2

Let $a_0, a_1, \ldots, a_n, a_{n+1}$ be a sequence of real numbers satisfying the following conditions: \[a_0 = a_{n+1 }= 0,\]\[ |a_{k-1} - 2a_k + a_{k+1}| \leq 1 \quad (k = 1, 2,\ldots , n).\] Prove that $|a_k| \leq \frac{k(n+1-k)}{2} \quad (k = 0, 1,\ldots ,n + 1).$

2022 IMO Shortlist, A1

Tags: sequence , algebra
Let $(a_n)_{n\geq 1}$ be a sequence of positive real numbers with the property that $$(a_{n+1})^2 + a_na_{n+2} \leq a_n + a_{n+2}$$ for all positive integers $n$. Show that $a_{2022}\leq 1$.

2018 China Northern MO, 6

For $a_1 = 3$, define the sequence $a_1, a_2, a_3, \ldots$ for $n \geq 1$ as $$na_{n+1}=2(n+1)a_n-n-2.$$ Prove that for any odd prime $p$, there exist positive integer $m,$ such that $p|a_m$ and $p|a_{m+1}.$

1998 Brazil Team Selection Test, Problem 5

Consider $k$ positive integers $a_1,a_2,\ldots,a_k$ satisfying $1\le a_1<a_2<\ldots<a_k\le n$ and $\operatorname{lcm}(a_i,a_j)\le n$ for any $i,j$. Prove that $$k\le2\lfloor\sqrt n\rfloor.$$

2020 Vietnam National Olympiad, 3

Let a sequence $(a_n)$ satisfy: $a_1=5,a_2=13$ and $a_{n+1}=5a_n-6a_{n-1},\forall n\ge2$ a) Prove that $(a_n, a_{n+1})=1,\forall n\ge1$ b) Prove that: $2^{k+1}|p-1\forall k\in\mathbb{N}$, if p is a prime factor of $a_{2^k}$

2024 Romania National Olympiad, 4

Let $a$ be a given positive integer. We consider the sequence $(x_n)_{n \ge 1}$ defined by $x_n=\frac{1}{1+na},$ for every positive integer $n.$ Prove that for any integer $k \ge 3,$ there exist positive integers $n_1<n_2<\ldots<n_k$ such that the numbers $x_{n_1},x_{n_2},\ldots,x_{n_k}$ are consecutive terms in an arithmetic progression.

2019 Swedish Mathematical Competition, 6

Is there an infinite sequence of positive integers $\{a_n\}_{n = 1}^{\infty}$ which contains each positive integer exactly once and is such that the number $a_n + a_{n + 1} $ is a perfect square for each $n$?

1977 Vietnam National Olympiad, 5

The real numbers $a_0, a_1, ... , a_{n+1}$ satisfy $a_0 = a_{n+1} = 0$ and $|a_{k-1} - 2a_k + a_{k+1}| \le 1$ for $k = 1, 2, ... , n$. Show that $|a_k| \le \frac{ k(n + 1 - k)}{2}$ for all $k$.

KoMaL A Problems 2023/2024, A. 872

For every positive integer $k$ let $a_{k,1},a_{k,2},\ldots$ be a sequence of positive integers. For every positive integer $k$ let sequence $\{a_{k+1,i}\}$ be the difference sequence of $\{a_{k,i}\}$, i.e. for all positive integers $k$ and $i$ the following holds: $a_{k,i+1}-a_{k,i}=a_{k+1,i}$. Is it possible that every positive integer appears exactly once among numbers $a_{k,i}$? [i]Proposed by Dávid Matolcsi, Berkeley[/i]

2008 China Team Selection Test, 2

The sequence $ \{x_{n}\}$ is defined by $ x_{1} \equal{} 2,x_{2} \equal{} 12$, and $ x_{n \plus{} 2} \equal{} 6x_{n \plus{} 1} \minus{} x_{n}$, $ (n \equal{} 1,2,\ldots)$. Let $ p$ be an odd prime number, let $ q$ be a prime divisor of $ x_{p}$. Prove that if $ q\neq2,3,$ then $ q\geq 2p \minus{} 1$.

2019 Ukraine Team Selection Test, 3

Let $a_0,a_1,a_2,\dots $ be a sequence of real numbers such that $a_0=0, a_1=1,$ and for every $n\geq 2$ there exists $1 \leq k \leq n$ satisfying \[ a_n=\frac{a_{n-1}+\dots + a_{n-k}}{k}. \]Find the maximum possible value of $a_{2018}-a_{2017}$.

1980 VTRMC, 3

Tags: sequence , limit
Let $$a_n = \frac{1\cdot3\cdot5\cdot\cdots\cdot(2n-1)}{2\cdot4\cdot6\cdot\cdots\cdot2n}.$$ (a) Prove that $\lim_{n\to \infty}a_n$ exists. (b) Show that $$a_n = \frac{\left(1-\frac1{2^2}\right)\left(1-\frac1{4^2}\right)\left(1-\frac1{6^2}\right)\cdots\left(1-\frac{1}{(2n)^2}\right)}{(2n+1)a_n}.$$ (c) Find $\lim_{n\to\infty}a_n$ and justify your answer

2003 Estonia Team Selection Test, 4

A deck consists of $2^n$ cards. The deck is shuffled using the following operation: if the cards are initially in the order $a_1,a_2,a_3,a_4,...,a_{2^n-1},a_{2^n}$ then after shuffling the order becomes $a_{2^{n-1}+1},a_1,a_{2^{n-1}+2},a_2,...,a_{2^n},a_{2^{n-1}}$ . Find the smallest number of such operations after which the original order of the cards is restored. (R. Palm)

2015 Romania National Olympiad, 3

Let be two nonnegative real numbers $ a,b $ with $ b>a, $ and a sequence $ \left( x_n \right)_{n\ge 1} $ of real numbers such that the sequence $ \left( \frac{x_1+x_2+\cdots +x_n}{n^a} \right)_{n\ge 1} $ is bounded. Show that the sequence $ \left( x_1+\frac{x_2}{2^b} +\frac{x_3}{3^b} +\cdots +\frac{x_n}{n^b} \right)_{n\ge 1} $ is convergent.

2024 Czech and Slovak Olympiad III A, 5

Let $(a_k)^{\infty}_{k=0}$ be a sequence of real numbers such that if $k$ is a non-negative integer, then $$a_{k+1} = 3a_k - \lfloor 2a_k \rfloor - \lfloor a_k \rfloor.$$ Definitely all positive integers $n$ such that if $a_0 = 1/n$, then this sequence is constant after a certain term.