This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1239

2019 Durer Math Competition Finals, 1

Let $a_o,a_1,a_2,..,a_ n$ be a non-decreasing sequence of $n+1$ real numbers where $a_0 = 0$ and for every $j > i $ we have $a_j - a_i \le j - i$. Show that $$\left (\sum_{i=0}^n a_i \right )^2 \ge \sum_{i=0}^n a_i^3$$

1973 Bulgaria National Olympiad, Problem 2

Let the numbers $a_1,a_2,a_3,a_4$ form an arithmetic progression with difference $d\ne0$. Prove that there are no exists geometric progressions $b_1,b_2,b_3,b_4$ and $c_1,c_2,c_3,c_4$ such that: $$a_1=b_1+c_1,a_2=b_2+c_2,a_3=b_3+c_3,a_4=b_4+c_4.$$

1998 North Macedonia National Olympiad, 5

The sequence $(a_n)$ is defined by $a_1 =\sqrt2$ and $a_{n+1} =\sqrt{2-\sqrt{4-a_n^2}}$. Let $b_n =2^{n+1}a_n$. Prove that $b_n \le 7$ and $b_n < b_{n+1}$ for all $n$.

2021 Baltic Way, 3

Tags: algebra , sequence
Determine all infinite sequences $(a_1,a_2,\dots)$ of positive integers satisfying \[a_{n+1}^2=1+(n+2021)a_n\] for all $n \ge 1$.

2021 Balkan MO Shortlist, C4

A sequence of $2n + 1$ non-negative integers $a_1, a_2, ..., a_{2n + 1}$ is given. There's also a sequence of $2n + 1$ consecutive cells enumerated from $1$ to $2n + 1$ from left to right, such that initially the number $a_i$ is written on the $i$-th cell, for $i = 1, 2, ..., 2n + 1$. Starting from this initial position, we repeat the following sequence of steps, as long as it's possible: [i]Step 1[/i]: Add up the numbers written on all the cells, denote the sum as $s$. [i]Step 2[/i]: If $s$ is equal to $0$ or if it is larger than the current number of cells, the process terminates. Otherwise, remove the $s$-th cell, and shift shift all cells that are to the right of it one position to the left. Then go to Step 1. Example: $(1, 0, 1, \underline{2}, 0) \rightarrow (1, \underline{0}, 1, 0) \rightarrow (1, \underline{1}, 0) \rightarrow (\underline{1}, 0) \rightarrow (0)$. A sequence $a_1, a_2,. . . , a_{2n+1}$ of non-negative integers is called balanced, if at the end of this process there’s exactly one cell left, and it’s the cell that was initially enumerated by $(n + 1)$, i.e. the cell that was initially in the middle. Find the total number of balanced sequences as a function of $n$. [i]Proposed by Viktor Simjanoski, North Macedonia[/i]

2006 Mathematics for Its Sake, 3

Let be two positive real numbers $ a,b, $ and an infinite arithmetic sequence of natural numbers $ \left( x_n \right)_{n\ge 1} . $ Study the convergence of the sequences $$ \left( \frac{1}{x_n}\sum_{i=1}^n\sqrt[x_i]{b} \right)_{n\ge 1}\text{ and } \left( \left(\sum_{i=1}^n \sqrt[x_i]{a}/\sqrt[x_i]{b} \right)^\frac{x_n}{\ln x_n} \right)_{n\ge 1} , $$ and calculate their limits. [i]Dumitru Acu[/i]

2022 Iran MO (2nd round), 5

define $(a_n)_{n \in \mathbb{N}}$ such that $a_1=2$ and $$a_{n+1}=\left(1+\frac{1}{n}\right)^n \times a_{n}$$ Prove that there exists infinite number of $n$ such that $\frac{a_1a_2 \ldots a_n}{n+1}$ is a square of an integer.

2011 Dutch IMO TST, 4

Prove that there exists no in nite sequence of prime numbers $p_0, p_1, p_2,...$ such that for all positive integers $k$: $p_k = 2p_{k-1} + 1$ or $p_k = 2p_{k-1} - 1$.

Mathematical Minds 2024, P6

Consider the sequence $a_1, a_2, \dots$ of positive integers such that $a_1=2$ and $a_{n+1}=a_n^4+a_n^3-3a_n^2-a_n+2$, for all $n\geqslant 1$. Prove that there exist infinitely many prime numbers that don't divide any term of the sequence. [i]Proposed by Pavel Ciurea[/i]

1994 IMO Shortlist, 1

Let $ a_{0} \equal{} 1994$ and $ a_{n \plus{} 1} \equal{} \frac {a_{n}^{2}}{a_{n} \plus{} 1}$ for each nonnegative integer $ n$. Prove that $ 1994 \minus{} n$ is the greatest integer less than or equal to $ a_{n}$, $ 0 \leq n \leq 998$

2022 Korea National Olympiad, 3

Suppose that the sequence $\{a_n\}$ of positive integers satisfies the following conditions: [list] [*]For an integer $i \geq 2022$, define $a_i$ as the smallest positive integer $x$ such that $x+\sum_{k=i-2021}^{i-1}a_k$ is a perfect square. [*]There exists infinitely many positive integers $n$ such that $a_n=4\times 2022-3$. [/list] Prove that there exists a positive integer $N$ such that $\sum_{k=n}^{n+2021}a_k$ is constant for every integer $n \geq N$. And determine the value of $\sum_{k=N}^{N+2021}a_k$.

2019 Brazil Team Selection Test, 3

Let $a_0,a_1,a_2,\dots $ be a sequence of real numbers such that $a_0=0, a_1=1,$ and for every $n\geq 2$ there exists $1 \leq k \leq n$ satisfying \[ a_n=\frac{a_{n-1}+\dots + a_{n-k}}{k}. \]Find the maximum possible value of $a_{2018}-a_{2017}$.

1953 Moscow Mathematical Olympiad, 257

Let $x_0 = 10^9$, $x_n = \frac{x^2_{n-1}+2}{2x_{n-1}}$ for $n > 0$. Prove that $0 < x_{36} - \sqrt2 < 10^{-9}$.

2005 Morocco TST, 3

Let $a_1,a_2,\ldots$ be an infinite sequence of real numbers, for which there exists a real number $c$ with $0\leq a_i\leq c$ for all $i$, such that \[\left\lvert a_i-a_j \right\rvert\geq \frac{1}{i+j} \quad \text{for all }i,\ j \text{ with } i \neq j. \] Prove that $c\geq1$.

KoMaL A Problems 2019/2020, A. 776

Let $k > 1$ be a fixed odd number, and for non-negative integers $n$ let $$f_n=\sum_{\substack{0\leq i\leq n\\ k\mid n-2i}}\binom{n}{i}.$$ Prove that $f_n$ satisfy the following recursion: $$f_{n}^2=\sum_{i=0}^{n} \binom{n}{i}f_{i}f_{n-i}.$$

2001 Moldova National Olympiad, Problem 7

Tags: algebra , sequence
Set $a_n=\frac{2n}{n^4+3n^2+4},n\in\mathbb N$. Prove that the sequence $S_n=a_1+a_2+\ldots+a_n$ is upperbounded and lowerbounded and find its limit as $n\to\infty$.

1980 Austrian-Polish Competition, 7

Find the greatest natural number $n$ such there exist natural numbers $x_{1}, x_{2}, \ldots, x_{n}$ and natural $a_{1}< a_{2}< \ldots < a_{n-1}$ satisfying the following equations for $i =1,2,\ldots,n-1$: \[x_{1}x_{2}\ldots x_{n}= 1980 \quad \text{and}\quad x_{i}+\frac{1980}{x_{i}}= a_{i}.\]

2024 Turkey EGMO TST, 4

Let $(a_n)_{n=1}^{\infty}$ be a strictly increasing sequence such that inequality $$a_n(a_n-2a_{n-1})+a_{n-1}(a_{n-1}-2a_{n-2})\geq 0$$ holds for all $n \geq 3$. Prove that for all $n\geq2$ the inequality $$a_n \geq a_{n-1}+a_{n-2}+\dots+a_1$$ holds as well.

1977 Germany Team Selection Test, 3

Let $a_{1}, \ldots, a_{n}$ be an infinite sequence of strictly positive integers, so that $a_{k} < a_{k+1}$ for any $k.$ Prove that there exists an infinity of terms $ a_{m},$ which can be written like $a_m = x \cdot a_p + y \cdot a_q$ with $x,y$ strictly positive integers and $p \neq q.$

2008 Postal Coaching, 1

Define a sequence $<x_n>$ by $x_0 = 0$ and $$\large x_n = \left\{ \begin{array}{ll} x_{n-1} + \frac{3^r-1}{2} & if \,\,n = 3^{r-1}(3k + 1)\\ & \\ x_{n-1} - \frac{3^r+1}{2} & if \,\, n = 3^{r-1}(3k + 2)\\ \end{array} \right. $$ where $k, r$ are integers. Prove that every integer occurs exactly once in the sequence.

1992 IMO Longlists, 55

For any positive integer $ x$ define $ g(x)$ as greatest odd divisor of $ x,$ and \[ f(x) \equal{} \begin{cases} \frac {x}{2} \plus{} \frac {x}{g(x)} & \text{if \ \(x\) is even}, \\ 2^{\frac {x \plus{} 1}{2}} & \text{if \ \(x\) is odd}. \end{cases} \] Construct the sequence $ x_1 \equal{} 1, x_{n \plus{} 1} \equal{} f(x_n).$ Show that the number 1992 appears in this sequence, determine the least $ n$ such that $ x_n \equal{} 1992,$ and determine whether $ n$ is unique.

1989 IMO Shortlist, 16

The set $ \{a_0, a_1, \ldots, a_n\}$ of real numbers satisfies the following conditions: [b](i)[/b] $ a_0 \equal{} a_n \equal{} 0,$ [b](ii)[/b] for $ 1 \leq k \leq n \minus{} 1,$ \[ a_k \equal{} c \plus{} \sum^{n\minus{}1}_{i\equal{}k} a_{i\minus{}k} \cdot \left(a_i \plus{} a_{i\plus{}1} \right)\] Prove that $ c \leq \frac{1}{4n}.$

2021 Estonia Team Selection Test, 3

For any odd prime $p$ and any integer $n,$ let $d_p (n) \in \{ 0,1, \dots, p-1 \}$ denote the remainder when $n$ is divided by $p.$ We say that $(a_0, a_1, a_2, \dots)$ is a [i]p-sequence[/i], if $a_0$ is a positive integer coprime to $p,$ and $a_{n+1} =a_n + d_p (a_n)$ for $n \geqslant 0.$ (a) Do there exist infinitely many primes $p$ for which there exist $p$-sequences $(a_0, a_1, a_2, \dots)$ and $(b_0, b_1, b_2, \dots)$ such that $a_n >b_n$ for infinitely many $n,$ and $b_n > a_n$ for infinitely many $n?$ (b) Do there exist infinitely many primes $p$ for which there exist $p$-sequences $(a_0, a_1, a_2, \dots)$ and $(b_0, b_1, b_2, \dots)$ such that $a_0 <b_0,$ but $a_n >b_n$ for all $n \geqslant 1?$ [I]United Kingdom[/i]

2004 Croatia National Olympiad, Problem 3

Tags: algebra , sequence
The sequences $(x_n),(y_n),(z_n),n\in\mathbb N$, are defined by the relations $$x_{n+1}=\frac{2x_n}{x_n^2-1},\qquad y_{n+1}=\frac{2y_n}{y_n^2-1},\qquad z_{n+1}=\frac{2z_n}{z_n^2-1},$$where $x_1=2$, $y_1=4$, and $x_1y_1z_1=x_1+y_1+z_1$. (a) Show that $x_n^2\ne1$, $y_n^2\ne1$, $z_n^2\ne1$ for all $n$; (b) Does there exist a $k\in\mathbb N$ for which $x_k+y_k+z_k=0$?

2016 Saint Petersburg Mathematical Olympiad, 1

In the sequence of integers $(a_n)$, the sum $a_m + a_n$ is divided by $m + n$ with any different $m$ and $n$. Prove that $a_n$ is a multiple of $n$ for any $n$.