Found problems: 1239
1988 IMO Shortlist, 1
An integer sequence is defined by \[{ a_n = 2 a_{n-1} + a_{n-2}}, \quad (n > 1), \quad a_0 = 0, a_1 = 1.\] Prove that $2^k$ divides $a_n$ if and only if $2^k$ divides $n$.
2014 Balkan MO Shortlist, A5
$\boxed{A5}$Let $n\in{N},n>2$,and suppose $a_1,a_2,...,a_{2n}$ is a permutation of the numbers $1,2,...,2n$ such that $a_1<a_3<...<a_{2n-1}$ and $a_2>a_4>...>a_{2n}.$Prove that
\[(a_1-a_2)^2+(a_3-a_4)^2+...+(a_{2n-1}-a_{2n})^2>n^3\]
2015 Belarus Team Selection Test, 2
In the sequence of digits $2,0,2,9,3,...$ any digit it equal to the last digit in the decimal representation of the sum of four previous digits. Do the four numbers $2,0,1,5$ in that order occur in the sequence?
Folklore
1978 All Soviet Union Mathematical Olympiad, 268
Consider a sequence $$x_n=(1+\sqrt2+\sqrt3)^n$$ Each member can be represented as $$x_n=q_n+r_n\sqrt2+s_n\sqrt3+t_n\sqrt6$$ where $q_n, r_n, s_n, t_n$ are integers. Find the limits of the fractions $r_n/q_n, s_n/q_n, t_n/q_n$.
2017 Azerbaijan EGMO TST, 2
Let $(a_n)_n\geq 0$ and $a_{m+n}+a_{m-n}=\frac{1}{2}(a_{2m}+a_{2n})$ for every $m\geq n\geq0.$ If $a_1=1,$ then find the value of $a_{2007}.$
2008 Dutch IMO TST, 3
Let $m, n$ be positive integers. Consider a sequence of positive integers $a_1, a_2, ... , a_n$ that satisfies $m = a_1 \ge a_2\ge ... \ge a_n \ge 1$. Then define, for $1\le i\le m$, $b_i =$ # $\{ j \in \{1, 2, ... , n\}: a_j \ge i\}$,
so $b_i$ is the number of terms $a_j $ of the given sequence for which $a_j \ge i$.
Similarly, we define, for $1\le j \le n$, $c_j=$ # $\{ i \in \{1, 2, ... , m\}: b_i \ge j\}$ , thus $c_j$ is the number of terms bi in the given sequence for which $b_i \ge j$.
E.g.: If $a$ is the sequence $5, 3, 3, 2, 1, 1$ then $b$ is the sequence $6, 4, 3, 1, 1$.
(a) Prove that $a_j = c_j $ for $1 \le j \le n$.
(b) Prove that for $1\le k \le m$: $\sum_{i=1}^{k} b_i = k \cdot b_k + \sum_{j=b_{k+1}}^{n} a_j$.
1992 Romania Team Selection Test, 4
Let $A$ be the set of all ordered sequences $(a_1,a_2,...,a_{11})$ of zeros and ones. The elements of $A$ are ordered as follows: The first element is $(0,0,...,0)$, and the $n + 1$−th is obtained from the $n$−th by changing the first component from the right such that the newly obtained sequence was not obtained before. Find the $1992$−th term of the ordered set $A$
1983 Bulgaria National Olympiad, Problem 1
Determine all natural numbers $n$ for which there exists a permutation $(a_1,a_2,\ldots,a_n)$ of the numbers $0,1,\ldots,n-1$ such that, if $b_i$ is the remainder of $a_1a_2\cdots a_i$ upon division by $n$ for $i=1,\ldots,n$, then $(b_1,b_2,\ldots,b_n)$ is also a permutation of $0,1,\ldots,n-1$.
2016 Germany Team Selection Test, 1
Determine all positive integers $M$ such that the sequence $a_0, a_1, a_2, \cdots$ defined by \[ a_0 = M + \frac{1}{2} \qquad \textrm{and} \qquad a_{k+1} = a_k\lfloor a_k \rfloor \quad \textrm{for} \, k = 0, 1, 2, \cdots \] contains at least one integer term.
2005 Taiwan TST Round 3, 1
Let $a_0$, $a_1$, $a_2$, ... be an infinite sequence of real numbers satisfying the equation $a_n=\left|a_{n+1}-a_{n+2}\right|$ for all $n\geq 0$, where $a_0$ and $a_1$ are two different positive reals.
Can this sequence $a_0$, $a_1$, $a_2$, ... be bounded?
[i]Proposed by Mihai Bălună, Romania[/i]
1979 Dutch Mathematical Olympiad, 3
Define $a_1 = 1979$ and $a_{n+1} = 9^{a_n}$ for $n = 1,2,3,...$. Determine the last two digits of $a_{1979}$.
2017 Abels Math Contest (Norwegian MO) Final, 2
Let the sequence an be defined by $a_0 = 2, a_1 = 15$, and $a_{n+2 }= 15a_{n+1} + 16a_n$ for $n \ge 0$.
Show that there are infinitely many integers $k$ such that $269 | a_k$.
2019 Thailand TST, 2
Let $a_0,a_1,a_2,\dots $ be a sequence of real numbers such that $a_0=0, a_1=1,$ and for every $n\geq 2$ there exists $1 \leq k \leq n$ satisfying \[ a_n=\frac{a_{n-1}+\dots + a_{n-k}}{k}. \]Find the maximum possible value of $a_{2018}-a_{2017}$.
2017 Iran MO (3rd round), 2
Consider a sequence $\{a_i\}^\infty_{i\ge1}$ of positive integers. For all positvie integers $n$ prove that there exists infinitely many positive integers $k$ such that there is no pair $(m,t)$ of positive integers where $m>n$ and
$$kn+a_n=tm(m+1)+a_m$$
2001 All-Russian Olympiad Regional Round, 11.5
Given a sequence $\{x_k\}$ such that $x_1 = 1$, $x_{n+1} = n \sin x_n+ 1$. Prove that the sequence is non-periodic.
2004 Nicolae Coculescu, 2
Let bet a sequence $\left( a_n \right)_{n\ge 1} $ with $ a_1=1 $ and defined as $ a_n=\sqrt[n]{1+na_{n-1}} . $
Show that $ \left( a_n \right)_{n\ge 1} $ is convergent and determine its limit.
[i]Florian Dumitrel[/i]
1973 Dutch Mathematical Olympiad, 4
We have an infinite sequence of real numbers $x_0,x_1, x_2, ... $ such that $x_{n+1} = \sqrt{x_n -\frac14}$ holds for all natural $n$ and moreover $x_0 \in \frac12$.
(a) Prove that for every natural $n$ holds: $x_n > \frac12$
(b) Prove that $\lim_{n \to \infty} x_n$ exists. Calculate this limit.
2019 Tournament Of Towns, 5
Consider a sequence of positive integers with total sum $2019$ such that no number and no sum of a set of consecutive num bers is equal to $40$. What is the greatest possible length of such a sequence?
(Alexandr Shapovalov)
1994 Tournament Of Towns, (414) 2
Consider a sequence of numbers between $0$ and $1$ in which the next number after $x$ is $1 - |1 - 2x|$. ($|x| = x$ if$ x \ge 0$, $|x| = -x$ if $x < 0$.) Prove that
(a) if the first number of the sequence is rational, then the sequence will be periodic (i.e. the terms repeat with a certain cycle length after a certain term in the sequence);
(b) if the sequence is periodic, then the first number is rational.
(G Shabat)
2018 Vietnam Team Selection Test, 4
Let $a\in\left[ \tfrac{1}{2},\ \tfrac{3}{2}\right]$ be a real number. Sequences $(u_n),\ (v_n)$ are defined as follows:
$$u_n=\frac{3}{2^{n+1}}\cdot (-1)^{\lfloor2^{n+1}a\rfloor},\ v_n=\frac{3}{2^{n+1}}\cdot (-1)^{n+\lfloor 2^{n+1}a\rfloor}.$$
a. Prove that
$${{({{u}_{0}}+{{u}_{1}}+\cdots +{{u}_{2018}})}^{2}}+{{({{v}_{0}}+{{v}_{1}}+\cdots +{{v}_{2018}})}^{2}}\le 72{{a}^{2}}-48a+10+\frac{2}{{{4}^{2019}}}.$$
b. Find all values of $a$ in the equality case.
2018 Greece National Olympiad, 1
Let $(x_n), n\in\mathbb{N}$ be a sequence such that $x_{n+1}=3x_n^3+x_n, \forall n\in\mathbb{N}$
and $x_1=\frac{a}{b}$ where $a,b$ are positive integers such that $3\not|b$. If $x_m$ is a square of a rational number for some positive integer $m$, prove that $x_1$ is also a square of a rational number.
1966 Swedish Mathematical Competition, 1
Let $\{x\}$ denote the fractional part of $x$, $x - [x]$. The sequences $x_1, x_2, x_3, ...$ and $y_1, y_2, y_3, ...$ are such that $\lim \{x_n\} = \lim \{y_n\} = 0$. Is it true that $\lim \{x_n + y_n\} = 0$? $\lim \{x_n - y_n\} = 0$?
1983 IMO Longlists, 9
Consider the set of all strictly decreasing sequences of $n$ natural numbers having the property that in each sequence no term divides any other term of the sequence. Let $A = (a_j)$ and $B = (b_j)$ be any two such sequences. We say that $A$ precedes $B$ if for some $k$, $a_k < b_k$ and $a_i = b_i$ for $i < k$. Find the terms of the first sequence of the set under this ordering.
2024 Romania EGMO TST, P1
Define sequence $a_{0}, a_{1}, a_{2}, \ldots, a_{2018}, a_{2019}$ as below:
$
a_{0}=1
$
$a_{n+1}=a_{n}-\frac{a_{n}^{2}}{2019}$, $n=0,1,2, \ldots, 2018$
Prove $a_{2019} < \frac{1}{2} < a_{2018}$
2015 India IMO Training Camp, 3
Let $n > 1$ be a given integer. Prove that infinitely many terms of the sequence $(a_k )_{k\ge 1}$, defined by \[a_k=\left\lfloor\frac{n^k}{k}\right\rfloor,\] are odd. (For a real number $x$, $\lfloor x\rfloor$ denotes the largest integer not exceeding $x$.)
[i]Proposed by Hong Kong[/i]