This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1239

2015 IFYM, Sozopol, 2

Let $a_0,a_1,a_2...$ be a sequence of natural numbers with the following property: $a_n^2$ divides $a_{n-1} a_{n+1}$ for $\forall$ $n\in \mathbb{N}$. Prove that, if for some natural $k\geq 2$ the numbers $a_1$ and $a_k$ are coprime, then $a_1$ divides $a_0$.

2018 Pan-African Shortlist, N3

For any positive integer $x$, we set $$ g(x) = \text{ largest odd divisor of } x, $$ $$ f(x) = \begin{cases} \frac{x}{2} + \frac{x}{g(x)} & \text{ if } x \text{ is even;} \\ 2^{\frac{x+1}{2}} & \text{ if } x \text{ is odd.} \end{cases} $$ Consider the sequence $(x_n)_{n \in \mathbb{N}}$ defined by $x_1 = 1$, $x_{n + 1} = f(x_n)$. Show that the integer $2018$ appears in this sequence, determine the least integer $n$ such that $x_n = 2018$, and determine whether $n$ is unique or not.

2020 Federal Competition For Advanced Students, P2, 3

Let $a$ be a fixed positive integer and $(e_n)$ the sequence, which is defined by $e_0=1$ and $$ e_n=a + \prod_{k=0}^{n-1} e_k$$ for $n \geq 1$. Prove that (a) There exist infinitely many prime numbers that divide one element of the sequence. (b) There exists one prime number that does not divide an element of the sequence. (Theresia Eisenkölbl)

2014 Brazil Team Selection Test, 4

Let $n$ be a positive integer, and consider a sequence $a_1 , a_2 , \dotsc , a_n $ of positive integers. Extend it periodically to an infinite sequence $a_1 , a_2 , \dotsc $ by defining $a_{n+i} = a_i $ for all $i \ge 1$. If \[a_1 \le a_2 \le \dots \le a_n \le a_1 +n \] and \[a_{a_i } \le n+i-1 \quad\text{for}\quad i=1,2,\dotsc, n, \] prove that \[a_1 + \dots +a_n \le n^2. \]

2005 Junior Tuymaada Olympiad, 8

The sequence of natural numbers is based on the following rule: each term, starting with the second, is obtained from the previous addition works of all its various simple divisors (for example, after the number $12$ should be the number $18$, and after the number $125$ , the number $130$). Prove that any two sequences constructed in this way have a common member.

2023 Estonia Team Selection Test, 5

Tags: algebra , sequence
Let $(a_n)_{n\geq 1}$ be a sequence of positive real numbers with the property that $$(a_{n+1})^2 + a_na_{n+2} \leq a_n + a_{n+2}$$ for all positive integers $n$. Show that $a_{2022}\leq 1$.

1981 IMO Shortlist, 9

A sequence $(a_n)$ is defined by means of the recursion \[a_1 = 1, a_{n+1} = \frac{1 + 4a_n +\sqrt{1+ 24a_n}}{16}.\] Find an explicit formula for $a_n.$

2018 Thailand TST, 3

Let $n$ be a fixed odd positive integer. For each odd prime $p$, define $$a_p=\frac{1}{p-1}\sum_{k=1}^{\frac{p-1}{2}}\bigg\{\frac{k^{2n}}{p}\bigg\}.$$ Prove that there is a real number $c$ such that $a_p = c$ for infinitely many primes $p$. [i]Note: $\left\{x\right\} = x - \left\lfloor x\right\rfloor$ is the fractional part of $x$.[/i]

2014 Hanoi Open Mathematics Competitions, 3

Tags: sequence , digit , algebra
How many $0$'s are there in the sequence $x_1, x_2,..., x_{2014}$ where $x_n =\big[ \frac{n + 1}{\sqrt{2015}}\big] -\big[ \frac{n }{\sqrt{2015}}\big]$ , $n = 1, 2,...,2014$ ? (A): $1128$, (B): $1129$, (C): $1130$, (D): $1131$, (E) None of the above.

Russian TST 2022, P2

Do there exist two bounded sequences $a_1, a_2,\ldots$ and $b_1, b_2,\ldots$ such that for each positive integers $n$ and $m>n$ at least one of the two inequalities $|a_m-a_n|>1/\sqrt{n},$ and $|b_m-b_n|>1/\sqrt{n}$ holds?

1973 IMO Shortlist, 8

Prove that there are exactly $\binom{k}{[k/2]}$ arrays $a_1, a_2, \ldots , a_{k+1}$ of nonnegative integers such that $a_1 = 0$ and $|a_i-a_{i+1}| = 1$ for $i = 1, 2, \ldots , k.$

2019 Jozsef Wildt International Math Competition, W. 7

If $$\Omega_n=\sum \limits_{k=1}^n \left(\int \limits_{-\frac{1}{k}}^{\frac{1}{k}}(2x^{10} + 3x^8 + 1)\cos^{-1}(kx)dx\right)$$Then find $$\Omega=\lim \limits_{n\to \infty}\left(\Omega_n-\pi H_n\right)$$

1982 IMO Longlists, 17

[b](a)[/b] Find the rearrangement $\{a_1, \dots , a_n\}$ of $\{1, 2, \dots, n\}$ that maximizes \[a_1a_2 + a_2a_3 + \cdots + a_na_1 = Q.\] [b](b)[/b] Find the rearrangement that minimizes $Q.$

1987 Polish MO Finals, 3

$w(x)$ is a polynomial with integer coefficients. Let $p_n$ be the sum of the digits of the number $w(n)$. Show that some value must occur infinitely often in the sequence $p_1, p_2, p_3, ...$ .

2023 CIIM, 3

Given a $3 \times 3$ symmetric real matrix $A$, we define $f(A)$ as a $3 \times 3$ matrix with the same eigenvectors of $A$ such that if $A$ has eigenvalues $a$, $b$, $c$, then $f(A)$ has eigenvalues $b+c$, $c+a$, $a+b$ (in that order). We define a sequence of symmetric real $3\times3$ matrices $A_0, A_1, A_2, \ldots$ such that $A_{n+1} = f(A_n)$ for $n \geq 0$. If the matrix $A_0$ has no zero entries, determine the maximum number of indices $j \geq 0$ for which the matrix $A_j$ has any null entries.

1980 IMO, 2

Define the numbers $a_0, a_1, \ldots, a_n$ in the following way: \[ a_0 = \frac{1}{2}, \quad a_{k+1} = a_k + \frac{a^2_k}{n} \quad (n > 1, k = 0,1, \ldots, n-1). \] Prove that \[ 1 - \frac{1}{n} < a_n < 1.\]

2015 Saudi Arabia GMO TST, 2

Find the number of strictly increasing sequences of nonnegative integers with the first term $0$ and the last term $15$, and among any two consecutive terms, exactly one of them is even. Lê Anh Vinh

2018 IMO Shortlist, A2

Find all integers $n \geq 3$ for which there exist real numbers $a_1, a_2, \dots a_{n + 2}$ satisfying $a_{n + 1} = a_1$, $a_{n + 2} = a_2$ and $$a_ia_{i + 1} + 1 = a_{i + 2},$$ for $i = 1, 2, \dots, n$. [i]Proposed by Patrik Bak, Slovakia[/i]

2011 Singapore Junior Math Olympiad, 4

Any positive integer $n$ can be written in the form $n = 2^aq$, where $a \ge 0$ and $q$ is odd. We call $q$ the [i]odd part[/i] of $n$. Define the sequence $a_0,a_1,...$ as follows: $a_0 = 2^{2011}-1$ and for $m > 0, a_{m+i}$ is the odd part of $3a_m + 1$. Find $a_{2011}$.

2022 Assara - South Russian Girl's MO, 6

There are $2022$ numbers arranged in a circle $a_1, a_2, . . ,a_{2022}$. It turned out that for any three consecutive $a_i$, $a_{i+1}$, $a_{i+2}$ the equality $a_i =\sqrt2 a_{i+2} - \sqrt3 a_{i+1}$. Prove that $\sum^{2022}_{i=1} a_ia_{i+2} = 0$, if we know that $a_{2023} = a_1$, $a_{2024} = a_2$.

2005 Czech And Slovak Olympiad III A, 1

Consider all arithmetical sequences of real numbers $(x_i)^{\infty}=1$ and $(y_i)^{\infty} =1$ with the common first term, such that for some $k > 1, x_{k-1}y_{k-1} = 42, x_ky_k = 30$, and $x_{k+1}y_{k+1} = 16$. Find all such pairs of sequences with the maximum possible $k$.

1969 All Soviet Union Mathematical Olympiad, 117

Tags: algebra , digit , sequence
Given a finite sequence of zeros and ones, which has two properties: a) if in some arbitrary place in the sequence we select five digits in a row and also select five digits in any other place in a row, then these fives will be different (they may overlap); b) if you add any digit to the right of the sequence, then property (a) will no longer hold true. Prove that the first four digits of our sequence coincide with the last four

1998 Yugoslav Team Selection Test, Problem 3

Tags: algebra , sequence
Prove that there are no positive integers $n$ and $k\le n$ such that the numbers $$\binom nk,\binom n{k+1},\binom n{k+2},\binom n{k+3}$$in this order form an arithmetic progression.

1946 Putnam, B4

For each positive integer $n$, put $$p_n =\left(1+\frac{1}{n}\right)^{n},\; P_n =\left(1+\frac{1}{n}\right)^{n+1}, \; h_n = \frac{2 p_n P_{n}}{ p_n + P_n }.$$ Prove that $h_1 < h_2 < h_3 <\ldots$

2019 Auckland Mathematical Olympiad, 4

Tags: algebra , sequence
Suppose $a_1 =\frac16$ and $a_n = a_{n-1} - \frac{1}{n}+ \frac{2}{n + 1} - \frac{1}{n + 2}$ for $n > 1$. Find $a_{100}$.