This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 295

1992 Romania Team Selection Test, 4

Let $A$ be the set of all ordered sequences $(a_1,a_2,...,a_{11})$ of zeros and ones. The elements of $A$ are ordered as follows: The first element is $(0,0,...,0)$, and the $n + 1$−th is obtained from the $n$−th by changing the first component from the right such that the newly obtained sequence was not obtained before. Find the $1992$−th term of the ordered set $A$

2001 Korea Junior Math Olympiad, 5

$A$ is a set satisfying the following the condition. Show that $2001+\sqrt{2001}$ is an element of $A$. [b]Condition[/b] (1) $1 \in A$ (2) If $x \in A$, then $x^2 \in A$. (3) If $(x-3)^2 \in A$, then $x \in A$.

2012 Danube Mathematical Competition, 4

Given a positive integer $n$, show that the set $\{1,2,...,n\}$ can be partitioned into $m$ sets, each with the same sum, if and only if m is a divisor of $\frac{n(n + 1)}{2}$ which does not exceed $\frac{n + 1}{2}$.

2006 Korea Junior Math Olympiad, 8

De ne the set $F$ as the following: $F = \{(a_1,a_2,... , a_{2006}) : \forall i = 1, 2,..., 2006, a_i \in \{-1,1\}\}$ Prove that there exists a subset of $F$, called $S$ which satis es the following: $|S| = 2006$ and for all $(a_1,a_2,... , a_{2006})\in F$ there exists $(b_1,b_2,... , b_{2006}) \in S$, such that $\Sigma_{i=1} ^{2006}a_ib_i = 0$.

2008 Korea Junior Math Olympiad, 4

Let $N$ be the set of positive integers. If $A,B,C \ne \emptyset$, $A \cap B = B \cap C = C \cap A = \emptyset$ and $A \cup B \cup C = N$, we say that $A,B,C$ are partitions of $N$. Prove that there are no partitions of $N, A,B,C$, that satis fy the following: (i) $\forall a \in A, b \in B$, we have $a + b + 1 \in C$ (ii) $\forall b \in B, c \in C$, we have $b + c + 1 \in A$ (iii) $\forall c \in C, a \in A$, we have $c + a + 1 \in B$

2021 Science ON all problems, 1

Tags: number theory , set
Supoose $A$ is a set of integers which contains all integers that can be written as $2^a-2^b$, $a,b\in \mathbb{Z}_{\ge 1}$ and also has the property that $a+b\in A$ whenever $a,b\in A$. Prove that if $A$ contains at least an odd number, then $A=\mathbb{Z}$. [i] (Andrei Bâra)[/i]

Oliforum Contest V 2017, 5

Find the smallest integer $n > 3$ such that, for each partition of $\{3, 4,..., n\}$ in two sets, at least one of these sets contains three (not necessarily distinct) numbers $ a, b, c$ for which $ab = c$. (Alberto Alfarano)

India EGMO 2025 TST, 1

Tags: combinatorics , set
Let $n$ be a positive integer. Initially the sequence $0,0,\cdots,0$ ($n$ times) is written on the board. In each round, Ananya choses an integer $t$ and a subset of the numbers written on the board and adds $t$ to all of them. What is the minimum number of rounds in which Ananya can make the sequence on the board strictly increasing? Proposed by Shantanu Nene

2004 Korea Junior Math Olympiad, 2

For $n\geq3$ define $S_n=\{1, 2, ..., n\}$. $A_1, A_{2}, ..., A_{n}$ are given subsets of $S_n$, each having an even number of elements. Prove that there exists a set $\{i_1, i_2, ..., i_t\}$, a nonempty subset of $S_n$ such that $$A_{i_1} \Delta A_{i_2} \Delta \ldots \Delta A_{i_t}=\emptyset$$ (For two sets $A, B$, we define $\Delta$ as $A \Delta B=(A\cup B)-(A\cap B)$)

2021 Korea - Final Round, P4

Tags: combinatorics , easy , set
There are $n$($\ge 2$) clubs $A_1,A_2,...A_n$ in Korean Mathematical Society. Prove that there exist $n-1$ sets $B_1,B_2,...B_{n-1}$ that satisfy the condition below. (1) $A_1\cup A_2\cup \cdots A_n=B_1\cup B_2\cup \cdots B_{n-1}$ (2) for any $1\le i<j\le n-1$, $B_i\cap B_j=\emptyset, -1\le\left\vert B_i \right\vert -\left\vert B_j \right\vert\le 1$ (3) for any $1\le i \le n-1$, there exist $A_k,A_j $($1\le k\le j\le n$)such that $B_i\subseteq A_k\cup A_j$

1994 Bulgaria National Olympiad, 6

Let $n$ be a positive integer and $A$ be a family of subsets of the set $\{1,2,...,n\},$ none of which contains another subset from A . Find the largest possible cardinality of $A$ .

2024 Brazil Cono Sur TST, 3

Tags: combinatorics , set
For a pair of integers $a$ and $b$, with $0<a<b<1000$, a set $S\subset \begin{Bmatrix}1,2,3,...,2024\end{Bmatrix}$ $escapes$ the pair $(a,b)$ if for any elements $s_1,s_2\in S$ we have $\left|s_1-s_2\right| \notin \begin{Bmatrix}a,b\end{Bmatrix}$. Let $f(a,b)$ be the greatest possible number of elements of a set that escapes the pair $(a,b)$. Find the maximum and minimum values of $f$.

2013 Danube Mathematical Competition, 4

Show that there exists a proper non-empty subset $S$ of the set of real numbers such that, for every real number $x$, the set $\{nx + S : n \in N\}$ is finite, where $nx + S =\{nx + s : s \in S\}$

1997 Bosnia and Herzegovina Team Selection Test, 6

Let $k$, $m$ and $n$ be integers such that $1<n \leq m-1 \leq k$. Find maximum size of subset $S$ of set $\{1,2,...,k\}$ such that sum of any $n$ different elements from $S$ is not: $a)$ equal to $m$, $b)$ exceeding $m$

2006 Singapore MO Open, 4

Let $n$ be positive integer. Let $S_1,S_2,\cdots,S_k$ be a collection of $2n$-element subsets of $\{1,2,3,4,...,4n-1,4n\}$ so that $S_{i}\cap S_{j}$ contains at most $n$ elements for all $1\leq i<j\leq k$. Show that $$k\leq 6^{(n+1)/2}$$

2017 Thailand TSTST, 1

1.1 Let $f(A)$ denote the difference between the maximum value and the minimum value of a set $A$. Find the sum of $f(A)$ as $A$ ranges over the subsets of $\{1, 2, \dots, n\}$. 1.2 All cells of an $8 × 8$ board are initially white. A move consists of flipping the color (white to black or vice versa) of cells in a $1\times 3$ or $3\times 1$ rectangle. Determine whether there is a finite sequence of moves resulting in the state where all $64$ cells are black. 1.3 Prove that for all positive integers $m$, there exists a positive integer $n$ such that the set $\{n, n + 1, n + 2, \dots , 3n\}$ contains exactly $m$ perfect squares.

2018 JBMO Shortlist, A7

Let $A$ be a set of positive integers satisfying the following : $a.)$ If $n \in A$ , then $n \le 2018$. $b.)$ If $S \subset A$ such that $|S|=3$, then there exists $m,n \in S$ such that $|n-m| \ge \sqrt{n}+\sqrt{m}$ What is the maximum cardinality of $A$ ?

2022 IMC, 4

Let $n > 3$ be an integer. Let $\Omega$ be the set of all triples of distinct elements of $\{1, 2, \ldots , n\}$. Let $m$ denote the minimal number of colours which suffice to colour $\Omega$ so that whenever $1\leq a<b<c<d \leq n$, the triples $\{a,b,c\}$ and $\{b,c,d\}$ have different colours. Prove that $\frac{1}{100}\log\log n \leq m \leq100\log \log n$.

2023 OMpD, 3

Let $m$ and $n$ be positive integers integers such that $2m + 1 < n$, and let $S$ be the set of the $2^n$ subsets of $\{1,2,\ldots,n\}$. Prove that we can place the elements of $S$ on a circle, so that for any two adjacent elements $A$ and $B$, the set $A \Delta B$ has exactly $2m + 1$ elements. [b]Note[/b]: $A \Delta B = (A \cup B) - (A \cap B)$ is the set of elements that are exclusively in $A$ or exclusively in $B$.

2002 AIME Problems, 14

A set $\mathcal{S}$ of distinct positive integers has the following property: for every integer $x$ in $\mathcal{S},$ the arithmetic mean of the set of values obtained by deleting $x$ from $\mathcal{S}$ is an integer. Given that 1 belongs to $\mathcal{S}$ and that 2002 is the largest element of $\mathcal{S},$ what is the greatet number of elements that $\mathcal{S}$ can have?

2025 Kosovo National Mathematical Olympiad`, P3

Tags: set , number theory
A subset $S$ of the natural numbers is called [i]dense [/i] for every $7$ consecutive natural numbers, at least $5$ of them are in $S$. Show that there exists a dense subset for which the equation $a^2+b^2=c^2$ has no solution for $a,b,c \in S$.

2017 China Team Selection Test, 3

Tags: set , combinatorics
Let $X$ be a set of $100$ elements. Find the smallest possible $n$ satisfying the following condition: Given a sequence of $n$ subsets of $X$, $A_1,A_2,\ldots,A_n$, there exists $1 \leq i < j < k \leq n$ such that $$A_i \subseteq A_j \subseteq A_k \text{ or } A_i \supseteq A_j \supseteq A_k.$$

2023 China Team Selection Test, P14

Tags: inequalities , set
For any nonempty, finite set $B$ and real $x$, define $$d_B(x) = \min_{b\in B} |x-b|$$ (1) Given positive integer $m$. Find the smallest real number $\lambda$ (possibly depending on $m$) such that for any positive integer $n$ and any reals $x_1,\cdots,x_n \in [0,1]$, there exists an $m$-element set $B$ of real numbers satisfying $$d_B(x_1)+\cdots+d_B(x_n) \le \lambda n$$ (2) Given positive integer $m$ and positive real $\epsilon$. Prove that there exists a positive integer $n$ and nonnegative reals $x_1,\cdots,x_n$, satisfying for any $m$-element set $B$ of real numbers, we have $$d_B(x_1)+\cdots+d_B(x_n) > (1-\epsilon)(x_1+\cdots+x_n)$$

2004 Junior Tuymaada Olympiad, 4

Tags: set , subset , partition , algebra
Given the disjoint finite sets of natural numbers $ A $ and $ B $, consisting of $ n $ and $ m $ elements, respectively. It is known that every natural number belonging to $ A $ or $ B $ satisfies at least one of the conditions $ k + 17 \in A $, $ k-31 \in B $. Prove that $ 17n = 31m $

KoMaL A Problems 2017/2018, A. 720

We call a positive integer [i]lively[/i] if it has a prime divisor greater than $10^{10^{100}}$. Prove that if $S$ is an infinite set of lively positive integers, then it has an infinite subset $T$ with the property that the sum of the elements in any finite nonempty subset of $T$ is a lively number.