This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2001 Saint Petersburg Mathematical Olympiad, 9.5

Points $A_1$, $B_1$, $C_1$ are midpoints of sides $BC$, $AC$, $AB$ of triangle $ABC$. On midlines $C_1B_1$ and $A_1B_1$ points $E$ and $F$ are chosen such that $BE$ is the angle bisector of $AEB_1$ and $BF$ is the angle bisector of $CFB_1$. Prove that bisectors of angles $ABC$ and $FBE$ coincide. [I]Proposed by F. Baharev[/i]