This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

1978 Romania Team Selection Test, 3

[b]a)[/b] Let $ D_1,D_2,D_3 $ be pairwise skew lines. Through every point $ P_2\in D_2 $ there is an unique common secant of these three lines that intersect $ D_1 $ at $ P_1 $ and $ D_3 $ at $ P_3. $ Let coordinate systems be introduced on $ D_2 $ and $ D_3 $ having as origin $ O_2, $ respectively, $ O_3. $ Find a relation between the coordinates of $ P_2 $ and $ P_3. $ [b]b)[/b] Show that there exist four pairwise skew lines with exactly two common secants. Also find examples with exactly one and with no common secants. [b]c)[/b] Let $ F_1,F_2,F_3,F_4 $ be any four secants of $ D_1,D_2, D_3. $ Prove that $ F_1,F_2, F_3, F_4 $ have infinitely many common secants.

1964 Czech and Slovak Olympiad III A, 2

Consider skew lines $PP'$, $QQ'$ and points $X$, $Y$ lying on them, respectively. Initially, we have $X=P$, $Y=Q$. Both points $X$, $Y$ start moving simultaneously along the rays $PP'$, $QQ'$ with the speeds $c_1$, $c_2$, respectively. Show that midpoint $Z$ of segment $XY$ always lies on a fixed ray $RR'$, where $R$ is midpoint of $PQ$.