Found problems: 59
2007 Estonia National Olympiad, 4
The figure shows a figure of $5$ unit squares, a Greek cross. What is the largest number of Greek crosses that can be placed on a grid of dimensions $8 \times 8$ without any overlaps, with each unit square covering just one square in a grid?
2017 Estonia Team Selection Test, 7
Let $n$ be a positive integer. In how many ways can an $n \times n$ table be filled with integers from $0$ to $5$ such that
a) the sum of each row is divisible by $2$ and the sum of each column is divisible by $3$
b) the sum of each row is divisible by $2$, the sum of each column is divisible by $3$ and the sum of each of the two diagonals is divisible by $6$?
2007 Estonia Team Selection Test, 6
Consider a $10 \times 10$ grid. On every move, we colour $4$ unit squares that lie in the intersection of some two rows and two columns. A move is allowed if at least one of the $4$ squares is previously uncoloured. What is the largest possible number of moves that can be taken to colour the whole grid?
1954 Moscow Mathematical Olympiad, 278
A $17 \times 17$ square is cut out of a sheet of graph paper. Each cell of this square has one of thenumbers from $1$ to $70$. Prove that there are $4$ distinct squares whose centers $A, B, C, D$ are the vertices of a parallelogramsuch that $AB // CD$, moreover, the sum of the numbers in the squares with centers $A$ and $C$ is equal to that in the squares with centers $B$ and $D$.
2018 BAMO, A
Twenty-five people of different heights stand in a $5\times 5$ grid of squares, with one person in each square. We know that each row has a shortest person, suppose Ana is the tallest of these five people. Similarly, we know that each column has a tallest person, suppose Bev is the shortest of these five people.
Assuming Ana and Bev are not the same person, who is taller: Ana or Bev?
Prove that your answer is always correct.
1991 All Soviet Union Mathematical Olympiad, 549
An $h \times k$ minor of an $n \times n$ table is the $hk$ cells which lie in $h$ rows and $k$ columns. The semiperimeter of the minor is $h + k$. A number of minors each with semiperimeter at least $n$ together include all the cells on the main diagonal. Show that they include at least half the cells in the table.
1998 Tournament Of Towns, 3
Nine numbers are arranged in a square table:
$a_1 \,\,\, a_2 \,\,\,a_3$
$b_1 \,\,\,b_2 \,\,\,b_3$
$c_1\,\,\, c_2 \,\,\,c_3$ .
It is known that the six numbers obtained by summing the rows and columns of the table are equal:
$a_1 + a_2 + a_3 = b_1 + b_2 + b_3 = c_1 + c_2 + c_3 = a_1 + b_1 + c_1 = a_2 + b_2 + c_2 = a_3 + b_3 + c_3$ .
Prove that the sum of products of numbers in the rows is equal to the sum of products of numbers in the columns:
$a_1 b_1 c_1 + a_2 b_2c_2 + a_3b_3c_3 = a_1a_2a_3 + b_1 b_2 b_3 + c_1 c_2c_3$ .
(V Proizvolov)
2019 Grand Duchy of Lithuania, 2
Every cell of a $20 \times 20$ table has to be coloured black or white (there are $2^{400}$ such colourings in total). Given any colouring $P$, we consider division of the table into rectangles with sides in the grid lines where no rectangle contains more than two black cells and where the number of rectangles containing at most one black cell is the least possible. We denote this smallest possible number of rectangles containing at most one black cell by $f(P)$. Determine the maximum value of $f(P)$ as $P$ ranges over all colourings.
1961 All Russian Mathematical Olympiad, 004
Given a table $4\times 4$.
a) Find, how $7$ stars can be put in its fields in such a way, that erasing of two arbitrary lines and two columns will always leave at list one of the stars.
b) Prove that if there are less than $7$ stars, You can always find two columns and two rows, such, that if you erase them, no star will remain in the table.