This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 43

1986 Tournament Of Towns, (126) 1

We are given trapezoid $ABCD$ and point $M$ on the intersection of its diagonals. The parallel sides are $AD$ and $BC$ and it is known that $AB$ is perpendicular to $AD$ and that the trapezoid can have an inscribed circle. If the radius of this inscribed circle is $R$ find the area of triangle $DCM$ .

1951 Moscow Mathematical Olympiad, 195

We have two concentric circles. A polygon is circumscribed around the smaller circle and is contained entirely inside the greater circle. Perpendiculars from the common center of the circles to the sides of the polygon are extended till they intersect the greater circle. Each of the points obtained is connected with the endpoints of the corresponding side of the polygon . When is the resulting star-shaped polygon the unfolding of a pyramid?

2018 India PRMO, 5

Let $ABCD$ be a trapezium in which $AB //CD$ and $AD \perp AB$. Suppose $ABCD$ has an incircle which touches $AB$ at $Q$ and $CD$ at $P$. Given that $PC = 36$ and $QB = 49$, find $PQ$.

Estonia Open Senior - geometry, 2000.2.4

The diagonals of the square $ABCD$ intersect at $P$ and the midpoint of the side $AB$ is $E$. Segment $ED$ intersects the diagonal $AC$ at point $F$ and segment $EC$ intersects the diagonal $BD$ at $G$. Inside the quadrilateral $EFPG$, draw a circle of radius $r$ tangent to all the sides of this quadrilateral. Prove that $r = | EF | - | FP |$.

1976 Chisinau City MO, 132

Let $O$ be the center of a circle inscribed in a convex quadrilateral $ABCD$ and $|AB|= a$, $|CD|=$c. Prove that $$\frac{a}{c}=\frac{AO\cdot BO}{CO\cdot DO}.$$

2019 Tournament Of Towns, 5

The point $M$ inside a convex quadrilateral $ABCD$ is equidistant from the lines $AB$ and $CD$ and is equidistant from the lines $BC$ and $AD$. The area of $ABCD$ occurred to be equal to $MA\cdot MC +MB \cdot MD$. Prove that the quadrilateral $ABCD$ is a) tangential (circumscribed), b) cyclic (inscribed). (Nairi Sedrakyan)

2014 Thailand TSTST, 3

Let $O$ be the incenter of a tangential quadrilateral $ABCD$. Prove that the orthocenters of $\vartriangle AOB$, $\vartriangle BOC$, $\vartriangle COD$, $\vartriangle DOA$ lie on a line.

1989 Greece National Olympiad, 4

A trapezoid with bases $a,b$ and altitude $h$ is circumscribed around a circl.. Prove that $h^2\le ab$.

2023 CUBRMC, 4

Let square $ABCD$ and circle $\Omega$ be on the same plane, and $AA'$, $BB'$, $CC'$, $DD'$ be tangents to $\Omega$. Let $WXY Z$ be a convex quadrilateral with side lengths $WX = AA'$, $XY = BB'$, $Y Z = CC'$, and $ZW = DD'$. If $WXY Z$ has an inscribed circle, prove that the diagonals $WY$ and $XZ$ are perpendicular to each other.

2020 Yasinsky Geometry Olympiad, 5

It is known that a circle can be inscribed in the quadrilateral $ABCD$, in addition $\angle A = \angle C$. Prove that $AB = BC$, $CD = DA$. (Olena Artemchuk)

Geometry Mathley 2011-12, 7.3

Let $ABCD$ be a tangential quadrilateral. Let $AB$ meet $CD$ at $E, AD$ intersect $BC$ at $F$. Two arbitrary lines through $E$ meet $AD,BC$ at $M,N, P,Q$ respectively ($M,N \in AD$, $P,Q \in BC$). Another arbitrary pair of lines through $F$ intersect $AB,CD$ at $X, Y,Z, T$ respectively ($X, Y \in AB$,$Z, T \in CD$). Suppose that $d_1, d_2$ are the second tangents from $E$ to the incircles of triangles $FXY, FZT,d_3, d_4$ are the second tangents from $F$ to the incircles of triangles $EMN,EPQ$. Prove that the four lines $d_1, d_2, d_3, d_4$ meet each other at four points and these intersections make a tangential quadrilateral. Nguyễn Văn Linh

VI Soros Olympiad 1999 - 2000 (Russia), 11.3

A convex quadrilateral $ABCD$ has an inscribed circle touching its sides $AB$, $BC$, $CD$, $DA$ at the points $M$,$N$,$P$,$K$, respectively. Let $O$ be the center of the inscribed circle, the area of the quadrilateral $MNPK$ is equal to $8$. Prove the inequality $$2S \le OA \cdot OC+ OB \cdot OD.$$

1999 Romania National Olympiad, 3

In the convex quadrilateral $ABCD$, the bisectors of angles $A$ and $C$ intersect in $I$. Prove that $ABCD$ is circumscriptible if and only if $$S[AIB] + S[CID] =S[AID]+S[BIC]$$ ( $S[XYZ]$ denotes the area of the triangle $XYZ$)

2013 NZMOC Camp Selection Problems, 6

$ABCD$ is a quadrilateral having both an inscribed circle (one tangent to all four sides) with center $I,$ and a circumscribed circle with center $O$. Let $S$ be the point of intersection of the diagonals of $ABCD$. Show that if any two of $S, I$ and $O$ coincide, then $ABCD$ is a square (and hence all three coincide).

Kyiv City MO 1984-93 - geometry, 1987.10.1

Is there a $1987$-gon with consecutive sides lengths $1, 2, 3,..., 1986, 1987$, in which you can fit a circle?

1984 All Soviet Union Mathematical Olympiad, 393

Given three circles $c_1,c_2,c_3$ with $r_1,r_2,r_3$ radiuses, $r_1 > r_2, r_1 > r_3$. Each lies outside of two others. The A point -- an intersection of the outer common tangents to $c_1$ and $c_2$ -- is outside $c_3$. The $B$ point -- an intersection of the outer common tangents to $c_1$ and $c_3$ -- is outside $c_2$. Two pairs of tangents -- from $A$ to $c_3$ and from $B$ to $c_2$ -- are drawn. Prove that the quadrangle, they make, is circumscribed around some circle and find its radius.

1989 Poland - Second Round, 6

In the triangle $ ABC $, the lines $ CP $, $ AP $, $ BP $ are drawn through the internal point $ P $ and intersect the sides $ AB $, $ BC $, $ CA $ at points $ K $, $ L $, $ M$, respectively. Prove that if circles can be inscribed in the quadrilaterals $ AKPM $ and $ KBLP $, then a circle can also be inscribed in the quadrilateral $ LCMP $.

1989 Tournament Of Towns, (214) 2

It is known that a circle can be inscribed in a trapezium $ABCD$. Prove that the two circles, constructed on its oblique sides as diameters, touch each other. (D. Fomin, Leningrad)

Kvant 2019, M2588

The point $M$ inside a convex quadrilateral $ABCD$ is equidistant from the lines $AB$ and $CD$ and is equidistant from the lines $BC$ and $AD$. The area of $ABCD$ occurred to be equal to $MA\cdot MC +MB \cdot MD$. Prove that the quadrilateral $ABCD$ is a) tangential (circumscribed), b) cyclic (inscribed). (Nairi Sedrakyan)

1975 Poland - Second Round, 2

In the convex quadrilateral $ ABCD $, the corresponding points $ M $ and $ N $ are chosen on the adjacent sides $ \overline{AB} $ and $ \overline{BC} $ and the intersection point of the segments $ AN $ and $ GM $ is marked by 0. Prove that if circles can be inscribed in the quadrilaterals $ AOCD $ and $ BMON $, then a circle can also be inscribed in the quadrilateral $ ABCD $.

2020 OMpD, 3

Let $ABCD$ be a quadrilateral and let $\Gamma$ be a circle of center $O$ that is internally tangent to its four sides. If $M$ is the midpoint of $AC$ and $N$ is the midpoint of $BD$, prove that $M,O, N$ are collinear.

1957 Poland - Second Round, 6

Prove that if a convex quadrilateral has the property that there exists a circle tangent to its sides (i.e. an inscribed circle), and also a circle tangent to the extensions of its sides (an excircle), then the diagonals of the quadrilateral are perpendicular to each other.

2010 Singapore Junior Math Olympiad, 1

Let the diagonals of the square $ABCD$ intersect at $S$ and let $P$ be the midpoint of $AB$. Let $M$ be the intersection of $AC$ and $PD$ and $N$ the intersection of $BD$ and $PC$. A circle is incribed in the quadrilateral $PMSN$. Prove that the radius of the circle is $MP- MS$.

2008 China Northern MO, 1A

As shown in figure , $\odot O$ is the inscribed circle of trapezoid $ABCD$, and the tangent points are $E, F, G, H$, $AB \parallel CD$. The line passing through$ B$, parallel to $AD$ intersects extension of $DC$ at point $P$. The extension of $AO$ intersects $CP$ at point $Q$. If $AE=BE$ , prove that $\angle CBQ = \angle PBQ$. [img]https://cdn.artofproblemsolving.com/attachments/d/2/7c3a04bb1c59bc6d448204fd78f553ea53cb9e.png[/img]

2009 Belarus Team Selection Test, 3

Given trapezoid $ABCD$ ($AD\parallel BC$) with $AD \perp AB$ and $T=AC\cap BD$. A circle centered at point $O$ is inscribed in the trapezoid and touches the side $CD$ at point $Q$. Let $P$ be the intersection point (different from $Q$) of the side $CD$ and the circle passing through $T,Q$ and $O$. Prove that $TP \parallel AD$. I. Voronovich