This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

OMMC POTM, 2022 10

Define a convex quadrilateral $\mathcal{P}$ on the plane. In a turn, it is allowed to take some vertex of $\mathcal{P}$, move it perpendicular to the current diagonal of $\mathcal{P}$ not containing it, so long as it never crosses that diagonal. Initially $\mathcal{P}$ is a parallelogram and after several turns, it is similar but not congruent to its original shape. Show that $\mathcal P$ is a rhombus. [i]Proposed by Evan Chang (squareman), USA[/i]