Found problems: 3
2014 IMAR Test, 4
Let $n$ be a positive integer. A Steiner tree associated with a finite set $S$ of points in the Euclidean $n$-space is a finite collection $T$ of straight-line segments in that space such that any two points in $S$ are joined by a unique path in $T$ , and its length is the sum of the segment lengths. Show that there exists a Steiner tree of length $1+(2^{n-1}-1)\sqrt{3}$ associated with the vertex set of a unit $n$-cube.
2005 Germany Team Selection Test, 2
Let $M$ be a set of points in the Cartesian plane, and let $\left(S\right)$ be a set of segments (whose endpoints not necessarily have to belong to $M$) such that one can walk from any point of $M$ to any other point of $M$ by travelling along segments which are in $\left(S\right)$. Find the smallest total length of the segments of $\left(S\right)$ in the cases
[b]a.)[/b] $M = \left\{\left(-1,0\right),\left(0,0\right),\left(1,0\right),\left(0,-1\right),\left(0,1\right)\right\}$.
[b]b.)[/b] $M = \left\{\left(-1,-1\right),\left(-1,0\right),\left(-1,1\right),\left(0,-1\right),\left(0,0\right),\left(0,1\right),\left(1,-1\right),\left(1,0\right),\left(1,1\right)\right\}$.
In other words, find the Steiner trees of the set $M$ in the above two cases.
2005 Germany Team Selection Test, 2
Let $M$ be a set of points in the Cartesian plane, and let $\left(S\right)$ be a set of segments (whose endpoints not necessarily have to belong to $M$) such that one can walk from any point of $M$ to any other point of $M$ by travelling along segments which are in $\left(S\right)$. Find the smallest total length of the segments of $\left(S\right)$ in the cases
[b]a.)[/b] $M = \left\{\left(-1,0\right),\left(0,0\right),\left(1,0\right),\left(0,-1\right),\left(0,1\right)\right\}$.
[b]b.)[/b] $M = \left\{\left(-1,-1\right),\left(-1,0\right),\left(-1,1\right),\left(0,-1\right),\left(0,0\right),\left(0,1\right),\left(1,-1\right),\left(1,0\right),\left(1,1\right)\right\}$.
In other words, find the Steiner trees of the set $M$ in the above two cases.