This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 41

1996 Swedish Mathematical Competition, 5

Let $n \ge 1$. Prove that it is possible to select some of the integers $1,2,...,2^n$ so that for each $p = 0,1,...,n - 1$ the sum of the $p$-th powers of the selected numbers is equal to the sum of the $p$-th powers of the remaining numbers.

2005 Austrian-Polish Competition, 6

Determine all monotone functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$, so that for all $x, y \in \mathbb{Z}$ \[f(x^{2005} + y^{2005}) = (f(x))^{2005} + (f(y))^{2005}\]

2005 Estonia National Olympiad, 2

Let $a, b$, and $n$ be integers such that $a + b$ is divisible by $n$ and $a^2 + b^2$ is divisible by $n^2$. Prove that $a^m + b^m$ is divisible by $n^m$ for all positive integers $m$.

2012 IFYM, Sozopol, 5

We are given the following sequence: $a_1=8,a_2=20,a_{n+2}=a_{n+1}^2+12a_n a_{n+1}+11a_n$. Prove that none of the members of the sequence can be presented as a sum of three seventh powers of natural numbers.

2018 China Team Selection Test, 4

Let $p$ be a prime and $k$ be a positive integer. Set $S$ contains all positive integers $a$ satisfying $1\le a \le p-1$, and there exists positive integer $x$ such that $x^k\equiv a \pmod p$. Suppose that $3\le |S| \le p-2$. Prove that the elements of $S$, when arranged in increasing order, does not form an arithmetic progression.

2012 QEDMO 11th, 6

Let $p$ be an odd prime number. Prove that $$1^{p-1} + 2^{p-1} +...+ (p-1)^{p-1} \equiv p + (p-1)! \mod p^2$$

1995 Singapore MO Open, 5

Let $a, b, c, d$ be four positive real numbers. Prove that $$a^{10} + b^{10}+c^{10} + d^{10} \ge (0.1a + 0.2b + 0.3c + 0.4d)^{10} + (0.4a + 0.3b + 0.2c + 0.ld)^{10} + (0.2a + 0.4b + 0.1c + 0.3d)^{10} + (0.3a + 0.1b + 0.4c + 0.2d)^{10}$$

2007 Thailand Mathematical Olympiad, 7

Let $a, b, c$ be complex numbers such that $a+b+c = 1$, $a^2+b^2+c^2 = 2$ and $a^3+b^3+c^3 = 3$. Find the value of $a^4 + b^4 + c^4$.

2014 Saudi Arabia GMO TST, 2

Let $p$ be a prime number. Prove that there exist infinitely many positive integers $n$ such that $p$ divides $1^n + 2^n +... + (p + 1)^n.$

1995 Romania Team Selection Test, 1

Let $a_1, a_2,...., a_n$ be distinct positive integers. Prove that $(a_1^5 + ...+ a_n^5) + (a_1^7 + ...+ a_n^7) \ge 2(a_1^3 + ...+ a_n^3)^2$ and find the cases of equality.

1970 Swedish Mathematical Competition, 1

Show that infinitely many positive integers cannot be written as a sum of three fourth powers of integers.

2013 Balkan MO Shortlist, N4

Let $p$ be a prime number greater than $3$. Prove that the sum $1^{p+2} + 2^{p+2} + ...+ (p-1)^{p+2}$ is divisible by $p^2$.

2010 Bundeswettbewerb Mathematik, 4

Find all numbers that can be expressed in exactly $2010$ different ways as the sum of powers of two with non-negative exponents, each power appearing as a summand at most three times. A sum can also be made from just one summand.

1993 Czech And Slovak Olympiad IIIA, 4

The sequence ($a_n$) of natural numbers is defined by $a_1 = 2$ and $a_{n+1}$ equals the sum of tenth powers of the decimal digits of $a_n$ for all $n \ge 1$. Are there numbers which appear twice in the sequence ($a_n$)?

2019 Lusophon Mathematical Olympiad, 5

a) Show that there are five integers $A, B, C, D$, and $E$ such that $2018 = A^5 + B^5 + C^5 + D^5 + E^5$ b) Show that there are no four integers $A, B, C$ and $D$ such that $2018 = A^5 + B^5 + C^5 + D^5$

2004 Thailand Mathematical Olympiad, 17

Compute the remainder when $1^{2547} + 2^{2547} +...+ 2547^{2547}$ is divided by $25$.