Found problems: 4
2020 USA TSTST, 1
Let $a$, $b$, $c$ be fixed positive integers. There are $a+b+c$ ducks sitting in a
circle, one behind the other. Each duck picks either rock, paper, or scissors, with $a$ ducks
picking rock, $b$ ducks picking paper, and $c$ ducks picking scissors.
A move consists of an operation of one of the following three forms:
[list]
[*] If a duck picking rock sits behind a duck picking scissors, they switch places.
[*] If a duck picking paper sits behind a duck picking rock, they switch places.
[*] If a duck picking scissors sits behind a duck picking paper, they switch places.
[/list]
Determine, in terms of $a$, $b$, and $c$, the maximum number of moves which could take
place, over all possible initial configurations.
2021 IMO Shortlist, C3
Two squirrels, Bushy and Jumpy, have collected 2021 walnuts for the winter. Jumpy numbers the walnuts from 1 through 2021, and digs 2021 little holes in a circular pattern in the ground around their favourite tree. The next morning Jumpy notices that Bushy had placed one walnut into each hole, but had paid no attention to the numbering. Unhappy, Jumpy decides to reorder the walnuts by performing a sequence of 2021 moves. In the $k$-th move, Jumpy swaps the positions of the two walnuts adjacent to walnut $k$.
Prove that there exists a value of $k$ such that, on the $k$-th move, Jumpy swaps some walnuts $a$ and $b$ such that $a<k<b$.
2017 Junior Balkan Team Selection Tests - Moldova, Problem 8
The bottom line of a $2\times 13$ rectangle is filled with $13$ tokens marked with the numbers $1, 2, ..., 13$ and located in that order. An operation is a move of a token from its cell into a free adjacent cell (two cells are called adjacent if they have a common side). What is the minimum number of operations needed to rearrange the chips in reverse order in the bottom line of the rectangle?
2021 IMO, 5
Two squirrels, Bushy and Jumpy, have collected 2021 walnuts for the winter. Jumpy numbers the walnuts from 1 through 2021, and digs 2021 little holes in a circular pattern in the ground around their favourite tree. The next morning Jumpy notices that Bushy had placed one walnut into each hole, but had paid no attention to the numbering. Unhappy, Jumpy decides to reorder the walnuts by performing a sequence of 2021 moves. In the $k$-th move, Jumpy swaps the positions of the two walnuts adjacent to walnut $k$.
Prove that there exists a value of $k$ such that, on the $k$-th move, Jumpy swaps some walnuts $a$ and $b$ such that $a<k<b$.