This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 744

2004 Purple Comet Problems, 21

Find the number of different quadruples $(a, b, c, d)$ of positive integers such that $ab =cd = a + b + c + d - 3$.

PEN C Problems, 2

The positive integers $a$ and $b$ are such that the numbers $15a+16b$ and $16a-15b$ are both squares of positive integers. What is the least possible value that can be taken on by the smaller of these two squares?

2019 Purple Comet Problems, 18

Suppose that $a, b, c$, and $d$ are real numbers simultaneously satisfying $a + b - c - d = 3$ $ab - 3bc + cd - 3da = 4$ $3ab - bc + 3cd - da = 5$ Find $11(a - c)^2 + 17(b -d)^2$.

1937 Moscow Mathematical Olympiad, 032

Solve the system $\begin{cases} x+ y +z = a \\ x^2 + y^2 + z^2 = a^2 \\ x^3 + y^3 +z^3 = a^3 \end{cases}$

2021 Baltic Way, 5

Let $x,y\in\mathbb{R}$ be such that $x = y(3-y)^2$ and $y = x(3-x)^2$. Find all possible values of $x+y$.

1994 AIME Problems, 7

For certain ordered pairs $(a,b)$ of real numbers, the system of equations \begin{eqnarray*} && ax+by =1\\ &&x^2+y^2=50\end{eqnarray*} has at least one solution, and each solution is an ordered pair $(x,y)$ of integers. How many such ordered pairs $(a,b)$ are there?

2010 India National Olympiad, 3

Find all non-zero real numbers $ x, y, z$ which satisfy the system of equations: \[ (x^2 \plus{} xy \plus{} y^2)(y^2 \plus{} yz \plus{} z^2)(z^2 \plus{} zx \plus{} x^2) \equal{} xyz\] \[ (x^4 \plus{} x^2y^2 \plus{} y^4)(y^4 \plus{} y^2z^2 \plus{} z^4)(z^4 \plus{} z^2x^2 \plus{} x^4) \equal{} x^3y^3z^3\]

2024 Polish MO Finals, 3

Determine all pairs $(p,q)$ of prime numbers with the following property: There are positive integers $a,b,c$ satisfying \[\frac{p}{a}+\frac{p}{b}+\frac{p}{c}=1 \quad \text{and} \quad \frac{a}{p}+\frac{b}{p}+\frac{c}{p}=q+1.\]

2007 Vietnam National Olympiad, 1

Solve the system of equations: $\{\begin{array}{l}(1+\frac{12}{3x+y}).\sqrt{x}=2\\(1-\frac{12}{3x+y}).\sqrt{y}=6\end{array}$

1983 All Soviet Union Mathematical Olympiad, 352

Find all the solutions of the system $$\begin{cases} y^2 = x^3 - 3x^2 + 2x \\ x^2 = y^3 - 3y^2 + 2y \end{cases}$$

2016 Vietnam National Olympiad, 1

Solve the system of equations $\begin{cases}6x-y+z^2=3\\ x^2-y^2-2z=-1\quad\quad (x,y,z\in\mathbb{R}.)\\ 6x^2-3y^2-y-2z^2=0\end{cases}$.

2000 Estonia National Olympiad, 3

Prove that if the numbers $a, b, c, d$ satisfy the system of equations $$\begin{cases} a^2+b^2=2cd \\ b^2+c^2=2da \\ c^2+d^2=2ab \end{cases}$$ then $a=b=c=d$.

2024 AIME, 4

Let $x,y$ and $z$ be positive real numbers that satisfy the following system of equations: $$\log_2\left({x \over yz}\right) = {1 \over 2}$$ $$\log_2\left({y \over xz}\right) = {1 \over 3}$$ $$\log_2\left({z \over xy}\right) = {1 \over 4}$$ Then the value of $\left|\log_2(x^4y^3z^2)\right|$ is ${m \over n}$ where $m$ and $n$ are relatively prime positive integers. Find $m+n$

2009 Ukraine National Mathematical Olympiad, 1

Find all possible real values of $a$ for which the system of equations \[\{\begin{array}{cc}x +y +z=0\\\text{ } \\ xy+yz+azx=0\end{array}\] has exactly one solution.

1939 Moscow Mathematical Olympiad, 043

Solve the system $\begin{cases} 3xyz -x^3 - y^3-z^3 = b^3 \\ x + y+ z = 2b \\ x^2 + y^2-z^2 = b^2 \end{cases}$ in $C$

1956 Czech and Slovak Olympiad III A, 1

Find all $x,y\in\left(0,\frac{\pi}{2}\right)$ such that \begin{align*} \frac{\cos x}{\cos y}&=2\cos^2 y, \\ \frac{\sin x}{\sin y}&=2\sin^2 y. \end{align*}

2011 South africa National Olympiad, 2

Suppose that $x$ and $y$ are real numbers that satisfy the system of equations $2^x-2^y=1$ $4^x-4^y=\frac{5}{3}$ Determine $x-y$

2013 Hanoi Open Mathematics Competitions, 14

Solve the system of equations $\begin{cases} x^3+y = x^2+1\\ 2y^3+z=2y^2+1 \\ 3z^3+x=3z^2+1 \end{cases}$

1979 IMO Shortlist, 18

Let $m$ positive integers $a_1, \dots , a_m$ be given. Prove that there exist fewer than $2^m$ positive integers $b_1, \dots , b_n$ such that all sums of distinct $b_k$’s are distinct and all $a_i \ (i \leq m)$ occur among them.

2008 Regional Competition For Advanced Students, 2

For a real number $ x$ is $ [x]$ the next smaller integer to $ x$, that is the integer $ g$ with $ g\leqq<g+1$, and $ \{x\}=x-[x]$ is the “decimal part” of $ x$. Determine all triples $ (a,b,c)$ of real numbers, which fulfil the following system of equations: \[ \{a\}+[b]+\{c\}=2,9\]\[ \{b\}+[c]+\{a\}=5,3\]\[\{c\}+[a]+\{b\}=4,0\]

2013 Hanoi Open Mathematics Competitions, 14

Solve the system of equations $\begin{cases} x^3+\frac13 y=x^2+x -\frac43 \\ y^3+\frac14 z=y^2+y -\frac54 \\ z^3+\frac15 x=z^2+z -\frac65 \end{cases}$

2000 Romania National Olympiad, 2

The negative real numbers $x, y, z, t$ satisfy simultaneously equalities, $$x + y + z = t, \,\,\,\,\frac{1}{x}+ \frac{1}{y}+\frac{1}{z}= \frac{1}{t}, \\,\,\,\, x^3 + y^3 + z^3 = 1000^3$$ Compute $x + y + z + t$.

1988 Federal Competition For Advanced Students, P2, 4

Let $ a_{ij}$ be nonnegative integers such that $ a_{ij}\equal{}0$ if and only if $ i>j$ and that $ \displaystyle\sum_{j\equal{}1}^{1988}a_{ij}\equal{}1988$ holds for all $ i\equal{}1,...,1988$. Find all real solutions of the system of equations: $ \displaystyle\sum_{j\equal{}1}^{1988} (1\plus{}a_{ij})x_j\equal{}i\plus{}1, 1 \le i \le 1988$.

2018 Hanoi Open Mathematics Competitions, 8

Let $a,b, c$ be real numbers with $a+b+c = 2018$. Suppose $x, y$, and $z$ are the distinct positive real numbers which are satisfied $a = x^2 - yz - 2018, b = y^2 - zx - 2018$ , and $c = z^2 - xy - 2018$. Compute the value of the following expression $P = \frac{\sqrt{a^3 + b^3 + c^3 - 3abc}}{x^3 + y^3 + z^3 - 3xyz}$

2019 Czech and Slovak Olympiad III A, 1

Find all triplets $(x,y,z)\in\mathbb{R}^3$ such that \begin{align*} x^2-yz &= |y-z|+1, \\ y^2-zx &= |z-x|+1, \\ z^2-xy &= |x-y|+1. \end{align*}