Found problems: 744
2006 Denmark MO - Mohr Contest, 2
Determine all sets of real numbers $(x,y,z)$ which fulfills
$$\begin{cases} x + y =2 \\ xy -z^2= 1\end{cases}$$
2002 AIME Problems, 6
The solutions to the system of equations
\begin{eqnarray*} \log_{225}{x}+\log_{64}{y} &=& 4\\ \log_x{225}-\log_y{64} &=& 1 \end{eqnarray*}
are $(x_1,y_1)$ and $(x_2, y_2).$ Find $\log_{30}{(x_1y_1x_2y_2)}.$
1965 IMO, 2
Consider the sytem of equations
\[ a_{11}x_1+a_{12}x_2+a_{13}x_3 = 0 \]\[a_{21}x_1+a_{22}x_2+a_{23}x_3 =0\]\[a_{31}x_1+a_{32}x_2+a_{33}x_3 = 0 \] with unknowns $x_1, x_2, x_3$. The coefficients satisfy the conditions:
a) $a_{11}, a_{22}, a_{33}$ are positive numbers;
b) the remaining coefficients are negative numbers;
c) in each equation, the sum ofthe coefficients is positive.
Prove that the given system has only the solution $x_1=x_2=x_3=0$.
2005 Greece National Olympiad, 1
Find the polynomial $P(x)$ with real coefficients such that $P(2)=12$ and $P(x^2)=x^2(x^2+1)P(x)$ for each $x\in\mathbb{R}$.
1989 IMO Shortlist, 15
Let $ a, b, c, d,m, n \in \mathbb{Z}^\plus{}$ such that \[ a^2\plus{}b^2\plus{}c^2\plus{}d^2 \equal{} 1989,\]
\[ a\plus{}b\plus{}c\plus{}d \equal{} m^2,\] and the largest of $ a, b, c, d$ is $ n^2.$ Determine, with proof, the values of $m$ and $ n.$
1965 All Russian Mathematical Olympiad, 063
Given $n^2$ numbers $x_{i,j}$ ($i,j=1,2,...,n$) satisfying the system of $n^3$ equations $$x_{i,j}+x_{j,k}+x_{k,i}=0 \,\,\, (i,j,k = 1,...,n)$$Prove that there exist such numbers $a_1,a_2,...,a_n$, that $x_{i,j}=a_i-a_j$ for all $i,j=1,...n$.
1989 IMO Longlists, 50
Let $ a, b, c, d,m, n \in \mathbb{Z}^\plus{}$ such that \[ a^2\plus{}b^2\plus{}c^2\plus{}d^2 \equal{} 1989,\]
\[ a\plus{}b\plus{}c\plus{}d \equal{} m^2,\] and the largest of $ a, b, c, d$ is $ n^2.$ Determine, with proof, the values of $m$ and $ n.$
1964 Poland - Second Round, 4
Find the real numbers $ x, y, z $ satisfying the system of equations
$$(z - x)(x - y) = a $$
$$(x - y)(y - z) = b$$
$$(y - z)(z - x) = c$$
where $ a, b, c $ are given real numbers.
2022 Cyprus TST, 1
Find all pairs of real numbers $(x,y)$ for which
\[
\begin{aligned}
x^2+y^2+xy&=133 \\
x+y+\sqrt{xy}&=19
\end{aligned}
\]
1983 Swedish Mathematical Competition, 3
The systems of equations
\[\left\{ \begin{array}{l}
2x_1 - x_2 = 1 \\
-x_1 + 2x_2 - x_3 = 1 \\
-x_2 + 2x_3 - x_4 = 1 \\
-x_3 + 3x_4 - x_5 =1 \\
\cdots\cdots\cdots\cdots\\
-x_{n-2} + 2x_{n-1} - x_n = 1 \\
-x_{n-1} + 2x_n = 1 \\
\end{array} \right.
\]
has a solution in positive integers $x_i$. Show that $n$ must be even.
2023 Greece National Olympiad, 1
Find all quadruplets (x, y, z, w) of positive real numbers that satisfy the following system:
$\begin{cases}
\frac{xyz+1}{x+1}= \frac{yzw+1}{y+1}= \frac{zwx+1}{z+1}= \frac{wxy+1}{w+1}\\
x+y+z+w= 48
\end{cases}$
2005 All-Russian Olympiad Regional Round, 8.7
Find all pairs $(x, y)$ of natural numbers such that $$x + y = a^n,
x^2 + y^2 = a^m$$ for some natural $a, n, m$.
2018-2019 SDML (High School), 11
For the system of equations $x^2 + x^2y^2 + x^2y^4 = 525$ and $x + xy + xy^2 = 35$, the sum of the real $y$ values that satisfy the equations is
$ \mathrm{(A) \ } 2 \qquad \mathrm{(B) \ } \frac{5}{2} \qquad \mathrm {(C) \ } 5 \qquad \mathrm{(D) \ } 20 \qquad \mathrm{(E) \ } \frac{55}{2}$
2022 AMC 10, 18
Consider systems of three linear equations with unknowns $x,$ $y,$ and $z,$
\begin{align*}
a_1 x + b_1 y + c_1 z = 0 \\
a_2 x + b_2 y + c_2 z = 0 \\
a_3 x + b_3 y + c_3 z = 0
\end{align*}
where each of the coefficients is either $0$ or $1$ and the system has a solution other than $x = y = z = 0.$ For example, one such system is $\{1x + 1y + 0z = 0, 0x + 1y + 1z = 0, 0x + 0y + 0z = 0\}$ with a nonzero solution of $\{x, y, z\} = \{1, -1, 1\}.$ How many such systems are there? (The equations in a system need not be distinct, and two systems containing the same equations in a different order are considered different.)
$\textbf{(A) } 302 \qquad \textbf{(B) } 338 \qquad \textbf{(C) } 340 \qquad \textbf{(D) } 343 \qquad \textbf{(E) } 344$
2019 Costa Rica - Final Round, A2
Let $x, y, z \in R$, find all triples $(x, y, z)$ that satisfy the following system of equations:
$2x^2 - 3xy + 2y^2 = 1$
$y^2 - 3yz + 4z^2 = 2$
$z^2 + 3zx - x^2 = 3$
1935 Moscow Mathematical Olympiad, 016
How many real solutions does the following system have ?$\begin{cases} x+y=2 \\
xy - z^2 = 1 \end{cases}$
2024 Nigerian MO Round 2, Problem 2
Solve the system of equations:
\[x>y>z\]
\[x+y+z=1\]
\[x^2+y^2+z^2=69\]
\[x^3+y^3+z^3=271\]
[hide=Answer]x=7, y=-2, z=-4[/hide]
2023 New Zealand MO, 5
Let $x, y$ and $z$ be real numbers such that: $x^2 = y + 2$, and $y^2 = z + 2$, and $z^2 = x + 2$.
Prove that $x + y + z$ is an integer.
2018 Turkey MO (2nd Round), 1
Find all pairs $(x,y)$ of real numbers that satisfy,
\begin{align*}
x^2+y^2+x+y &= xy(x+y)-\frac{10}{27}\\
|xy| & \leq \frac{25}{9}.
\end{align*}
2022 Polish MO Finals, 4
Find all triples $(a,b,c)$ of real numbers satisfying the system
$\begin{cases}
a^3+b^2c=ac \\
b^3+c^2a=ba \\
c^3+a^2b=cb
\end{cases}$
2024 CCA Math Bonanza, T1
Real numbers $(x,y)$ satisfy the following equations:
$$(x + 3)(y + 1) + y^2 = 3y$$
$$-x + x(y + x) = - 2x - 3.$$
Find the sum of all possible values of $x$.
[i]Team #1[/i]
2025 Polish MO Finals, 1
Find all $(a, b, c, d)\in \mathbb{R}$ satisfying
\[\begin{aligned}
\begin{cases}
a+b+c+d=0,\\
a^2+b^2+c^2+d^2=12,\\
abcd=-3.\\
\end{cases}
\end{aligned}\]
1984 IMO Shortlist, 1
Find all solutions of the following system of $n$ equations in $n$ variables:
\[\begin{array}{c}\ x_1|x_1| - (x_1 - a)|x_1 - a| = x_2|x_2|,x_2|x_2| - (x_2 - a)|x_2 - a| = x_3|x_3|,\ \vdots \ x_n|x_n| - (x_n - a)|x_n - a| = x_1|x_1|\end{array}\]
where $a$ is a given number.
2001 Kazakhstan National Olympiad, 5
Find all possible pairs of real numbers $ (x, y) $ that satisfy the equalities $ y ^ 2- [x] ^ 2 = 2001 $ and $ x ^ 2 + [y] ^ 2 = 2001 $.
2000 Baltic Way, 17
Find all real solutions to the following system of equations:
\[\begin{cases} x+y+z+t=5\\xy+yz+zt+tx=4\\xyz+yzt+ztx+txy=3\\xyzt=-1\end{cases}\]