This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 744

2006 Denmark MO - Mohr Contest, 2

Determine all sets of real numbers $(x,y,z)$ which fulfills $$\begin{cases} x + y =2 \\ xy -z^2= 1\end{cases}$$

2002 AIME Problems, 6

The solutions to the system of equations \begin{eqnarray*} \log_{225}{x}+\log_{64}{y} &=& 4\\ \log_x{225}-\log_y{64} &=& 1 \end{eqnarray*} are $(x_1,y_1)$ and $(x_2, y_2).$ Find $\log_{30}{(x_1y_1x_2y_2)}.$

1965 IMO, 2

Consider the sytem of equations \[ a_{11}x_1+a_{12}x_2+a_{13}x_3 = 0 \]\[a_{21}x_1+a_{22}x_2+a_{23}x_3 =0\]\[a_{31}x_1+a_{32}x_2+a_{33}x_3 = 0 \] with unknowns $x_1, x_2, x_3$. The coefficients satisfy the conditions: a) $a_{11}, a_{22}, a_{33}$ are positive numbers; b) the remaining coefficients are negative numbers; c) in each equation, the sum ofthe coefficients is positive. Prove that the given system has only the solution $x_1=x_2=x_3=0$.

2005 Greece National Olympiad, 1

Find the polynomial $P(x)$ with real coefficients such that $P(2)=12$ and $P(x^2)=x^2(x^2+1)P(x)$ for each $x\in\mathbb{R}$.

1989 IMO Shortlist, 15

Let $ a, b, c, d,m, n \in \mathbb{Z}^\plus{}$ such that \[ a^2\plus{}b^2\plus{}c^2\plus{}d^2 \equal{} 1989,\] \[ a\plus{}b\plus{}c\plus{}d \equal{} m^2,\] and the largest of $ a, b, c, d$ is $ n^2.$ Determine, with proof, the values of $m$ and $ n.$

1965 All Russian Mathematical Olympiad, 063

Given $n^2$ numbers $x_{i,j}$ ($i,j=1,2,...,n$) satisfying the system of $n^3$ equations $$x_{i,j}+x_{j,k}+x_{k,i}=0 \,\,\, (i,j,k = 1,...,n)$$Prove that there exist such numbers $a_1,a_2,...,a_n$, that $x_{i,j}=a_i-a_j$ for all $i,j=1,...n$.

1989 IMO Longlists, 50

Let $ a, b, c, d,m, n \in \mathbb{Z}^\plus{}$ such that \[ a^2\plus{}b^2\plus{}c^2\plus{}d^2 \equal{} 1989,\] \[ a\plus{}b\plus{}c\plus{}d \equal{} m^2,\] and the largest of $ a, b, c, d$ is $ n^2.$ Determine, with proof, the values of $m$ and $ n.$

1964 Poland - Second Round, 4

Find the real numbers $ x, y, z $ satisfying the system of equations $$(z - x)(x - y) = a $$ $$(x - y)(y - z) = b$$ $$(y - z)(z - x) = c$$ where $ a, b, c $ are given real numbers.

2022 Cyprus TST, 1

Find all pairs of real numbers $(x,y)$ for which \[ \begin{aligned} x^2+y^2+xy&=133 \\ x+y+\sqrt{xy}&=19 \end{aligned} \]

1983 Swedish Mathematical Competition, 3

The systems of equations \[\left\{ \begin{array}{l} 2x_1 - x_2 = 1 \\ -x_1 + 2x_2 - x_3 = 1 \\ -x_2 + 2x_3 - x_4 = 1 \\ -x_3 + 3x_4 - x_5 =1 \\ \cdots\cdots\cdots\cdots\\ -x_{n-2} + 2x_{n-1} - x_n = 1 \\ -x_{n-1} + 2x_n = 1 \\ \end{array} \right. \] has a solution in positive integers $x_i$. Show that $n$ must be even.

2023 Greece National Olympiad, 1

Find all quadruplets (x, y, z, w) of positive real numbers that satisfy the following system: $\begin{cases} \frac{xyz+1}{x+1}= \frac{yzw+1}{y+1}= \frac{zwx+1}{z+1}= \frac{wxy+1}{w+1}\\ x+y+z+w= 48 \end{cases}$

2005 All-Russian Olympiad Regional Round, 8.7

Find all pairs $(x, y)$ of natural numbers such that $$x + y = a^n, x^2 + y^2 = a^m$$ for some natural $a, n, m$.

2018-2019 SDML (High School), 11

For the system of equations $x^2 + x^2y^2 + x^2y^4 = 525$ and $x + xy + xy^2 = 35$, the sum of the real $y$ values that satisfy the equations is $ \mathrm{(A) \ } 2 \qquad \mathrm{(B) \ } \frac{5}{2} \qquad \mathrm {(C) \ } 5 \qquad \mathrm{(D) \ } 20 \qquad \mathrm{(E) \ } \frac{55}{2}$

2022 AMC 10, 18

Consider systems of three linear equations with unknowns $x,$ $y,$ and $z,$ \begin{align*} a_1 x + b_1 y + c_1 z = 0 \\ a_2 x + b_2 y + c_2 z = 0 \\ a_3 x + b_3 y + c_3 z = 0 \end{align*} where each of the coefficients is either $0$ or $1$ and the system has a solution other than $x = y = z = 0.$ For example, one such system is $\{1x + 1y + 0z = 0, 0x + 1y + 1z = 0, 0x + 0y + 0z = 0\}$ with a nonzero solution of $\{x, y, z\} = \{1, -1, 1\}.$ How many such systems are there? (The equations in a system need not be distinct, and two systems containing the same equations in a different order are considered different.) $\textbf{(A) } 302 \qquad \textbf{(B) } 338 \qquad \textbf{(C) } 340 \qquad \textbf{(D) } 343 \qquad \textbf{(E) } 344$

2019 Costa Rica - Final Round, A2

Let $x, y, z \in R$, find all triples $(x, y, z)$ that satisfy the following system of equations: $2x^2 - 3xy + 2y^2 = 1$ $y^2 - 3yz + 4z^2 = 2$ $z^2 + 3zx - x^2 = 3$

1935 Moscow Mathematical Olympiad, 016

How many real solutions does the following system have ?$\begin{cases} x+y=2 \\ xy - z^2 = 1 \end{cases}$

2024 Nigerian MO Round 2, Problem 2

Solve the system of equations: \[x>y>z\] \[x+y+z=1\] \[x^2+y^2+z^2=69\] \[x^3+y^3+z^3=271\] [hide=Answer]x=7, y=-2, z=-4[/hide]

2023 New Zealand MO, 5

Let $x, y$ and $z$ be real numbers such that: $x^2 = y + 2$, and $y^2 = z + 2$, and $z^2 = x + 2$. Prove that $x + y + z$ is an integer.

2018 Turkey MO (2nd Round), 1

Find all pairs $(x,y)$ of real numbers that satisfy, \begin{align*} x^2+y^2+x+y &= xy(x+y)-\frac{10}{27}\\ |xy| & \leq \frac{25}{9}. \end{align*}

2022 Polish MO Finals, 4

Find all triples $(a,b,c)$ of real numbers satisfying the system $\begin{cases} a^3+b^2c=ac \\ b^3+c^2a=ba \\ c^3+a^2b=cb \end{cases}$

2024 CCA Math Bonanza, T1

Real numbers $(x,y)$ satisfy the following equations: $$(x + 3)(y + 1) + y^2 = 3y$$ $$-x + x(y + x) = - 2x - 3.$$ Find the sum of all possible values of $x$. [i]Team #1[/i]

2025 Polish MO Finals, 1

Find all $(a, b, c, d)\in \mathbb{R}$ satisfying \[\begin{aligned} \begin{cases} a+b+c+d=0,\\ a^2+b^2+c^2+d^2=12,\\ abcd=-3.\\ \end{cases} \end{aligned}\]

1984 IMO Shortlist, 1

Find all solutions of the following system of $n$ equations in $n$ variables: \[\begin{array}{c}\ x_1|x_1| - (x_1 - a)|x_1 - a| = x_2|x_2|,x_2|x_2| - (x_2 - a)|x_2 - a| = x_3|x_3|,\ \vdots \ x_n|x_n| - (x_n - a)|x_n - a| = x_1|x_1|\end{array}\] where $a$ is a given number.

2001 Kazakhstan National Olympiad, 5

Find all possible pairs of real numbers $ (x, y) $ that satisfy the equalities $ y ^ 2- [x] ^ 2 = 2001 $ and $ x ^ 2 + [y] ^ 2 = 2001 $.

2000 Baltic Way, 17

Find all real solutions to the following system of equations: \[\begin{cases} x+y+z+t=5\\xy+yz+zt+tx=4\\xyz+yzt+ztx+txy=3\\xyzt=-1\end{cases}\]