This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 744

2020 South Africa National Olympiad, 3

If $x$, $y$, $z$ are real numbers satisfying \begin{align*} (x + 1)(y + 1)(z + 1) & = 3 \\ (x + 2)(y + 2)(z + 2) & = -2 \\ (x + 3)(y + 3)(z + 3) & = -1, \end{align*} find the value of $$ (x + 20)(y + 20)(z + 20). $$

1956 Czech and Slovak Olympiad III A, 3

Find all real pairs $x,y$ such that \begin{align*} x-|y+1|&=1, \\ x^2+y&=10. \end{align*}

1993 Poland - First Round, 1

Prove that the system of equations $ \begin{cases} \ a^2 - b = c^2 \\ \ b^2 - a = d^2 \\ \end{cases} $ has no integer solutions $a, b, c, d$.

2014 Lithuania Team Selection Test, 3

Given such positive real numbers $a, b$ and $c$, that the system of equations: $ \{\begin{matrix}a^2x+b^2y+c^2z=1&&\\xy+yz+zx=1&&\end{matrix} $ has exactly one solution of real numbers $(x, y, z)$. Prove, that there is a triangle, which borders lengths are equal to $a, b$ and $c$.

2017 German National Olympiad, 1

Given two real numbers $p$ and $q$, we study the following system of equations with variables $x,y \in \mathbb{R}$: \begin{align*} x^2+py+q&=0,\\ y^2+px+q&=0. \end{align*} Determine the number of distinct solutions $(x,y)$ in terms of $p$ and $q$.

1998 German National Olympiad, 6a

Find all real pairs $(x,y)$ that solve the system of equations \begin{align} x^5 &= 21x^3+y^3 \\ y^5 &= x^3+21y^3. \end{align}

2014 Ukraine Team Selection Test, 9

Let $m, n$ be odd prime numbers. Find all pairs of integers numbers $a, b$ for which the system of equations: $x^m+y^m+z^m=a$, $x^n+y^n+z^n=b$ has many solutions in integers $x, y, z$.

2011 Indonesia TST, 1

Find all $4$-tuple of real numbers $(x, y, z, w)$ that satisfy the following system of equations: $$x^2 + y^2 + z^2 + w^2 = 4$$ $$\frac{1}{x^2} +\frac{1}{y^2} +\frac{1}{z^2 }+\frac{1}{w^2} = 5 -\frac{1}{(xyzw)^2}$$

1967 IMO, 6

In a sports meeting a total of $m$ medals were awarded over $n$ days. On the first day one medal and $\frac{1}{7}$ of the remaining medals were awarded. On the second day two medals and $\frac{1}{7}$ of the remaining medals were awarded, and so on. On the last day, the remaining $n$ medals were awarded. How many medals did the meeting last, and what was the total number of medals ?

1995 Austrian-Polish Competition, 1

Determine all real solutions $(a_1,...,a_n)$ of the following system of equations: $$\begin{cases}a_3 = a_2 + a_1\\ a_4 = a_3 + a_2\\ ...\\ a_n = a_{n-1} + a_{n-2}\\ a_1= a_n +a_{n-1} \\ a_2 = a_1 + a_n \end{cases}$$

2014 AMC 12/AHSME, 16

Let $P$ be a cubic polynomial with $P(0) = k, P(1) = 2k,$ and $P(-1) = 3k$. What is $P(2) + P(-2)$? $ \textbf{(A) }0 \qquad\textbf{(B) }k \qquad\textbf{(C) }6k \qquad\textbf{(D) }7k\qquad\textbf{(E) }14k\qquad $

2009 All-Russian Olympiad, 5

Let $ a$, $ b$, $ c$ be three real numbers satisfying that \[ \left\{\begin{array}{c c c} \left(a\plus{}b\right)\left(b\plus{}c\right)\left(c\plus{}a\right)&\equal{}&abc\\ \left(a^3\plus{}b^3\right)\left(b^3\plus{}c^3\right)\left(c^3\plus{}a^3\right)&\equal{}&a^3b^3c^3\end{array}\right.\] Prove that $ abc\equal{}0$.

1999 Irish Math Olympiad, 1

Solve the system of equations: $ y^2\equal{}(x\plus{}8)(x^2\plus{}2),$ $ y^2\minus{}(8\plus{}4x)y\plus{}(16\plus{}16x\minus{}5x^2)\equal{}0.$

2009 District Olympiad, 2

Real numbers $a, b, c, d, e$, have the property $$|a - b| = 2|b -c| = 3|c - d| = 4|d- e| = 5|e - a|.$$ Prove they are all equal.

2022 Pan-African, 4

Find all functions $f$ and $g$ defined from $\mathbb{R}_{>0}$ to $\mathbb{R}_{>0}$ such that for all $x, y > 0$ the two equations hold $$ (f(x) + y - 1)(g(y) + x - 1) = {(x + y)}^2 $$ $$ (-f(x) + y)(g(y) + x) = (x + y + 1)(y - x - 1) $$ [i]Note: $\mathbb{R}_{>0}$ denotes the set of positive real numbers.[/i]

2009 IMAR Test, 1

Given $a$ and $b$ distinct positive integers, show that the system of equations $x y +zw = a$ $xz + yw = b$ has only finitely many solutions in integers $x, y, z,w$.

1984 Austrian-Polish Competition, 5

Given $n > 2$ nonnegative distinct integers $a_1,...,a_n$, find all nonnegative integers $y$ and $x_1,...,x_n$ satisfying $gcd(x_1,...,x_n) = 1$ and $$\begin{cases} a_1x_1 + a_2x_2 +...+ a_nx_n = yx_1 \\ a_2x_1 + a_3x_2 +...+ a_1x_n = yx_2 \\ ... \\ a_nx_1 + a_1x_2 +...+ a_{n-1}x_n = yx_n \end{cases}$$

2012 Finnish National High School Mathematics Competition, 2

Let $x\ne 1,y\ne 1$ and $x\ne y.$ Show that if \[\frac{yz-x^2}{1-x}=\frac{zx-y^2}{1-y},\] then \[\frac{yz-x^2}{1-x}=\frac{zx-y^2}{1-y}=x+y+z.\]

1963 AMC 12/AHSME, 23

$A$ gives $B$ as many cents as $B$ has and $C$ as many cents as $C$ has. Similarly, $B$ then gives $A$ and $C$ as many cents as each then has. $C$, similarly, then gives $A$ and $B$ as many cents as each then has. If each finally has $16$ cents, with how many cents does $A$ start? $\textbf{(A)}\ 24 \qquad \textbf{(B)}\ 26\qquad \textbf{(C)}\ 28 \qquad \textbf{(D)}\ 30 \qquad \textbf{(E)}\ 32$

2009 JBMO Shortlist, 1

Determine all integers $a, b, c$ satisfying identities: $a + b + c = 15$ $(a - 3)^3 + (b - 5)^3 + (c -7)^3 = 540$

2022 BMT, 17

Compute the number of ordered triples $(a, b, c)$ of integers between $-100$ and $100$ inclusive satisfying the simultaneous equations $$a^3 - 2a = abc - b - c$$ $$b^3 - 2b = bca - c - a$$ $$c^3 - 2c = cab - a - b.$$

2004 Czech-Polish-Slovak Match, 4

Solve in real numbers the system of equations: \begin{align*} \frac{1}{xy}&=\frac{x}{z}+1 \\ \frac{1}{yz}&=\frac{y}{x}+1 \\ \frac{1}{zx}&=\frac{z}{y}+1 \\ \end{align*}

1980 IMO Longlists, 11

Ten gamblers started playing with the same amount of money. Each turn they cast (threw) five dice. At each stage the gambler who had thrown paid to each of his 9 opponents $\frac{1}{n}$ times the amount which that opponent owned at that moment. They threw and paid one after the other. At the 10th round (i.e. when each gambler has cast the five dice once), the dice showed a total of 12, and after payment it turned out that every player had exactly the same sum as he had at the beginning. Is it possible to determine the total shown by the dice at the nine former rounds ?

2017 Azerbaijan Senior National Olympiad, A1

Solve the system of equation for $(x,y) \in \mathbb{R}$ $$\left\{\begin{matrix} \sqrt{x^2+y^2}+\sqrt{(x-4)^2+(y-3)^2}=5\\ 3x^2+4xy=24 \end{matrix}\right.$$ \\ Explain your answer

2004 Cuba MO, 1

Determine all real solutions to the system of equations: $$x_1 + x_2 +...+ x_{2004 }= 2004$$ $$x^4_1+ x^4_2+ ... + x^4_{2004} = x^3_1+x^3_2+... + x^3_{2004}$$