This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 353

2020 Novosibirsk Oral Olympiad in Geometry, 6

In triangle $ABC$, point $M$ is the midpoint of $BC$, $P$ the point of intersection of the tangents at points $B$ and $C$ of the circumscribed circle of $ABC$, $N$ is the midpoint of the segment $MP$. The segment $AN$ meets the circumcircle $ABC$ at the point $Q$. Prove that $\angle PMQ = \angle MAQ$.

2014 Belarus Team Selection Test, 1

Let $I$ be the incenter of a triangle $ABC$. The circle passing through $I$ and centered at $A$ meets the circumference of the triangle $ABC$ at points $M$ and $N$. Prove that the line $MN$ touches the incircle of the triangle $ABC$. (I. Kachan)

Geometry Mathley 2011-12, 7.4

Let $ABCD$ be a quadrilateral inscribed in the circle $(O)$. Let $(K)$ be an arbitrary circle passing through $B,C$. Circle $(O_1)$ tangent to $AB,AC$ and is internally tangent to $(K)$. Circle $(O_2)$ touches $DB,DC$ and is internally tangent to $(K)$. Prove that one of the two external common tangents of $(O_1)$ and $(O_2)$ is parallel to $AD$. Trần Quang Hùng