This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 280

2011 Ukraine Team Selection Test, 9

Inside the inscribed quadrilateral $ ABCD $, a point $ P $ is marked such that $ \angle PBC = \angle PDA $, $ \angle PCB = \angle PAD $. Prove that there exists a circle that touches the straight lines $ AB $ and $ CD $, as well as the circles circumscribed by the triangles $ ABP $ and $ CDP $.

2016 Mexico National Olmypiad, 6

Let $ABCD$ a quadrilateral inscribed in a circumference, $l_1$ the parallel to $BC$ through $A$, and $l_2$ the parallel to $AD$ through $B$. The line $DC$ intersects $l_1$ and $l_2$ at $E$ and $F$, respectively. The perpendicular to $l_1$ through $A$ intersects $BC$ at $P$, and the perpendicular to $l_2$ through $B$ cuts $AD$ at $Q$. Let $\Gamma_1$ and $\Gamma_2$ be the circumferences that pass through the vertex of triangles $ADE$ and $BFC$, respectively. Prove that $\Gamma_1$ and $\Gamma_2$ are tangent to each other if and only if $DP$ is perpendicular to $CQ$.

2019 Istmo Centroamericano MO, 3

Let $ABC$ be an acute triangle, with $AB <AC$. Let $M$ be the midpoint of $AB$, $H$ the foot of the altitude from $A$, and $Q$ be point on side $AC$ such that $\angle ABQ = \angle BCA$. Show that the circumcircles of the triangles $ABQ$ and $BHM$ are tangent.

Indonesia MO Shortlist - geometry, g8

$ABC$ is an acute triangle with $AB> AC$. $\Gamma_B$ is a circle that passes through $A,B$ and is tangent to $AC$ on $A$. Define similar for $ \Gamma_C$. Let $D$ be the intersection $\Gamma_B$ and $\Gamma_C$ and $M$ be the midpoint of $BC$. $AM$ cuts $\Gamma_C$ at $E$. Let $O$ be the center of the circumscibed circle of the triangle $ABC$. Prove that the circumscibed circle of the triangle $ODE$ is tangent to $\Gamma_B$.

Geometry Mathley 2011-12, 7.4

Let $ABCD$ be a quadrilateral inscribed in the circle $(O)$. Let $(K)$ be an arbitrary circle passing through $B,C$. Circle $(O_1)$ tangent to $AB,AC$ and is internally tangent to $(K)$. Circle $(O_2)$ touches $DB,DC$ and is internally tangent to $(K)$. Prove that one of the two external common tangents of $(O_1)$ and $(O_2)$ is parallel to $AD$. Trần Quang Hùng