Found problems: 178
2018 Azerbaijan BMO TST, 4
A rectangle $\mathcal{R}$ with odd integer side lengths is divided into small rectangles with integer side lengths. Prove that there is at least one among the small rectangles whose distances from the four sides of $\mathcal{R}$ are either all odd or all even.
[i]Proposed by Jeck Lim, Singapore[/i]
2014 Czech-Polish-Slovak Junior Match, 3
We have $10$ identical tiles as shown. The tiles can be rotated, but not flipper over. A $7 \times 7$ board should be covered with these tiles so that exactly one unit square is covered by two tiles and all other fields by one tile. Designate all unit sqaures that can be covered with two tiles.
[img]https://cdn.artofproblemsolving.com/attachments/d/5/6602a5c9e99126bd656f997dee3657348d98b5.png[/img]
2004 IMO Shortlist, 7
Define a "hook" to be a figure made up of six unit squares as shown below in the picture, or any of the figures obtained by applying rotations and reflections to this figure.
[asy]
unitsize(0.5 cm);
draw((0,0)--(1,0));
draw((0,1)--(1,1));
draw((2,1)--(3,1));
draw((0,2)--(3,2));
draw((0,3)--(3,3));
draw((0,0)--(0,3));
draw((1,0)--(1,3));
draw((2,1)--(2,3));
draw((3,1)--(3,3));
[/asy]
Determine all $ m\times n$ rectangles that can be covered without gaps and without overlaps with hooks such that
- the rectangle is covered without gaps and without overlaps
- no part of a hook covers area outside the rectangle.