This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 126

2014 IMS, 4

Let $(X,d)$ be a metric space and $f:X \to X$ be a function such that $\forall x,y\in X : d(f(x),f(y))=d(x,y)$. $\text{a})$ Prove that for all $x \in X$, $\lim_{n \rightarrow +\infty} \frac{d(x,f^n(x))}{n}$ exists, where $f^n(x)$ is $\underbrace{f(f(\cdots f(x)}_{n \text{times}} \cdots ))$. $\text{b})$ Prove that the amount of the limit does [b][u]not[/u][/b] depend on choosing $x$.