This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 235

1978 Vietnam National Olympiad, 6

Given a rectangular parallelepiped $ABCDA'B'C'D'$ with the bases $ABCD, A'B'C'D'$, the edges $AA',BB', CC',DD'$ and $AB = a,AD = b,AA' = c$. Show that there exists a triangle with the sides equal to the distances from $A,A',D$ to the diagonal $BD'$ of the parallelepiped. Denote those distances by $m_1,m_2,m_3$. Find the relationship between $a, b, c,m_1,m_2,m_3$.

2013 NIMO Problems, 6

Let $n$ and $k$ be integers satisfying $\binom{2k}{2} + n = 60$. It is known that $n$ days before Evan's 16th birthday, something happened. Compute $60-n$. [i]Proposed by Evan Chen[/i]

1969 IMO Shortlist, 55

For each of $k=1,2,3,4,5$ find necessary and sufficient conditions on $a>0$ such that there exists a tetrahedron with $k$ edges length $a$ and the remainder length $1$.

2023 Peru MO (ONEM), 2

For each positive real number $x$, let $f(x)=\frac{x}{1+x}$ . Prove that if $a$, $b,$ $c$ are the sidelengths of a triangle, then $f(a)$, $f(b),$ $f(c)$ are sidelengths of a triangle.

1992 China National Olympiad, 1

Let equation $x^n+a_{n-1}x^{n-1}+a_{n-2}x^{n-2}+\dots +a_1x+a_0=0$ with real coefficients satisfy $0<a_0\le a_1\le a_2\le \dots \le a_{n-1}\le 1$. Suppose that $\lambda$ ($|\lambda|>1$) is a complex root of the equation, prove that $\lambda^{n+1}=1$.

2006 Iran Team Selection Test, 4

Let $x_1,x_2,\ldots,x_n$ be real numbers. Prove that \[ \sum_{i,j=1}^n |x_i+x_j|\geq n\sum_{i=1}^n |x_i| \]

2009 IMO Shortlist, 3

Determine all functions $ f$ from the set of positive integers to the set of positive integers such that, for all positive integers $ a$ and $ b$, there exists a non-degenerate triangle with sides of lengths \[ a, f(b) \text{ and } f(b \plus{} f(a) \minus{} 1).\] (A triangle is non-degenerate if its vertices are not collinear.) [i]Proposed by Bruno Le Floch, France[/i]

2014 Saudi Arabia BMO TST, 4

Let $n$ be an integer greater than $2$. Consider a set of $n$ different points, with no three collinear, in the plane. Prove that we can label the points $P_1,~ P_2, \dots , P_n$ such that $P_1P_2 \dots P_n$ is not a self-intersecting polygon. ([i]A polygon is self-intersecting if one of its side intersects the interior of another side. The polygon is not necessarily convex[/i] )

OMMC POTM, 2023 12

All four angles of quadrilateral are greater than $60^o$. Prove that we can choose three sides to make a triangle.

1990 IMO Longlists, 6

Let function $f : \mathbb Z_{\geq 0}^0 \to \mathbb N$ satisfy the following conditions: (i) $ f(0, 0, 0) = 1;$ (ii) $f(x, y, z) = f(x - 1, y, z) + f(x, y - 1, z) + f(x, y, z - 1);$ (iii) when applying above relation iteratively, if any of $x', y', z$' is negative, then $f(x', y', z') = 0.$ Prove that if $x, y, z$ are the side lengths of a triangle, then $\frac{\left(f(x,y,z) \right) ^k}{ f(mx ,my, mz)}$ is not an integer for any integers $k, m > 1.$