This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 20

1988 IMO Longlists, 14

Let $ a$ and $ b$ be two positive integers such that $ a \cdot b \plus{} 1$ divides $ a^{2} \plus{} b^{2}$. Show that $ \frac {a^{2} \plus{} b^{2}}{a \cdot b \plus{} 1}$ is a perfect square.

2017 IMO Shortlist, N6

Find the smallest positive integer $n$ or show no such $n$ exists, with the following property: there are infinitely many distinct $n$-tuples of positive rational numbers $(a_1, a_2, \ldots, a_n)$ such that both $$a_1+a_2+\dots +a_n \quad \text{and} \quad \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}$$ are integers.

2007 IMO Shortlist, 6

Let $ k$ be a positive integer. Prove that the number $ (4 \cdot k^2 \minus{} 1)^2$ has a positive divisor of the form $ 8kn \minus{} 1$ if and only if $ k$ is even. [url=http://www.mathlinks.ro/viewtopic.php?p=894656#894656]Actual IMO 2007 Problem, posed as question 5 in the contest, which was used as a lemma in the official solutions for problem N6 as shown above.[/url] [i]Author: Kevin Buzzard and Edward Crane, United Kingdom [/i]

2018 Ukraine Team Selection Test, 6

Find the smallest positive integer $n$ or show no such $n$ exists, with the following property: there are infinitely many distinct $n$-tuples of positive rational numbers $(a_1, a_2, \ldots, a_n)$ such that both $$a_1+a_2+\dots +a_n \quad \text{and} \quad \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}$$ are integers.

2018 Thailand TST, 3

Find the smallest positive integer $n$ or show no such $n$ exists, with the following property: there are infinitely many distinct $n$-tuples of positive rational numbers $(a_1, a_2, \ldots, a_n)$ such that both $$a_1+a_2+\dots +a_n \quad \text{and} \quad \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}$$ are integers.

2018 Azerbaijan IMO TST, 3

Find the smallest positive integer $n$ or show no such $n$ exists, with the following property: there are infinitely many distinct $n$-tuples of positive rational numbers $(a_1, a_2, \ldots, a_n)$ such that both $$a_1+a_2+\dots +a_n \quad \text{and} \quad \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}$$ are integers.

2017 SG Originals, N6

Find the smallest positive integer $n$ or show no such $n$ exists, with the following property: there are infinitely many distinct $n$-tuples of positive rational numbers $(a_1, a_2, \ldots, a_n)$ such that both $$a_1+a_2+\dots +a_n \quad \text{and} \quad \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}$$ are integers.

2002 IMO Shortlist, 4

Is there a positive integer $m$ such that the equation \[ {1\over a}+{1\over b}+{1\over c}+{1\over abc}={m\over a+b+c} \] has infinitely many solutions in positive integers $a,b,c$?

2010 China Western Mathematical Olympiad, 8

Determine all possible values of integer $k$ for which there exist positive integers $a$ and $b$ such that $\dfrac{b+1}{a} + \dfrac{a+1}{b} = k$.

1988 IMO, 3

Let $ a$ and $ b$ be two positive integers such that $ a \cdot b \plus{} 1$ divides $ a^{2} \plus{} b^{2}$. Show that $ \frac {a^{2} \plus{} b^{2}}{a \cdot b \plus{} 1}$ is a perfect square.

2018 Brazil Team Selection Test, 4

Find the smallest positive integer $n$ or show no such $n$ exists, with the following property: there are infinitely many distinct $n$-tuples of positive rational numbers $(a_1, a_2, \ldots, a_n)$ such that both $$a_1+a_2+\dots +a_n \quad \text{and} \quad \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}$$ are integers.

2018 India IMO Training Camp, 3

Find the smallest positive integer $n$ or show no such $n$ exists, with the following property: there are infinitely many distinct $n$-tuples of positive rational numbers $(a_1, a_2, \ldots, a_n)$ such that both $$a_1+a_2+\dots +a_n \quad \text{and} \quad \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}$$ are integers.

2014 China Team Selection Test, 4

Let $k$ be a fixed odd integer, $k>3$. Prove: There exist infinitely many positive integers $n$, such that there are two positive integers $d_1, d_2$ satisfying $d_1,d_2$ each dividing $\frac{n^2+1}{2}$, and $d_1+d_2=n+k$.

2013 Iran MO (3rd Round), 2

Suppose that $a,b$ are two odd positive integers such that $2ab+1 \mid a^2 + b^2 + 1$. Prove that $a=b$. (15 points)

PEN A Problems, 82

Which integers can be represented as \[\frac{(x+y+z)^{2}}{xyz}\] where $x$, $y$, and $z$ are positive integers?

1988 IMO Shortlist, 9

Let $ a$ and $ b$ be two positive integers such that $ a \cdot b \plus{} 1$ divides $ a^{2} \plus{} b^{2}$. Show that $ \frac {a^{2} \plus{} b^{2}}{a \cdot b \plus{} 1}$ is a perfect square.

2018 Taiwan TST Round 2, 3

Find the smallest positive integer $n$ or show no such $n$ exists, with the following property: there are infinitely many distinct $n$-tuples of positive rational numbers $(a_1, a_2, \ldots, a_n)$ such that both $$a_1+a_2+\dots +a_n \quad \text{and} \quad \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}$$ are integers.

2014 China Team Selection Test, 4

Let $k$ be a fixed odd integer, $k>3$. Prove: There exist infinitely many positive integers $n$, such that there are two positive integers $d_1, d_2$ satisfying $d_1,d_2$ each dividing $\frac{n^2+1}{2}$, and $d_1+d_2=n+k$.

2018 India IMO Training Camp, 3

Find the smallest positive integer $n$ or show no such $n$ exists, with the following property: there are infinitely many distinct $n$-tuples of positive rational numbers $(a_1, a_2, \ldots, a_n)$ such that both $$a_1+a_2+\dots +a_n \quad \text{and} \quad \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}$$ are integers.

PEN H Problems, 17

Find all positive integers $n$ for which the equation \[a+b+c+d=n \sqrt{abcd}\] has a solution in positive integers.