This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 117

2005 Chile National Olympiad, 6

A box contains $100$ tickets. Each ticket has a real number written on it. There are no restrictions on the type of number except that they are all different (they can be integers, rational, positive, negative, irrational, large or small). Of course there is one ticket that has the highest number and that is the winner. The game consists of drawing a ticket at random, looking at it and deciding whether to keep it or not. If we choose to keep him, it is verified if he was the oldest, in which case we win a million pesos (if we don't win, the game is over). If we don't think it's the biggest, we can discard it and draw another one, repeating the process until we like one or we run out of tickets. Going back to choose a previously discarded ticket is prohibited. Find a game strategy that gives at least a $25\%$ chance of winning.

2021 Dutch IMO TST, 2

Stekel and Prick play a game on an $ m \times n$ board, where $m$ and $n$ are positive are integers. They alternate turns, with Stekel starting. Spine bets on his turn, he always takes a pawn on a square where there is no pawn yet. Prick does his turn the same, but his pawn must always come into a square adjacent to the square that Spike just placed a pawn in on his previous turn. Prick wins like the whole board is full of pawns. Spike wins if Prik can no longer move a pawn on his turn, while there is still at least one empty square on the board. Determine for all pairs $(m, n)$ who has a winning strategy.

1998 German National Olympiad, 2

Two pupils $A$ and $B$ play the following game. They begin with a pile of $1998$ matches and $A$ plays first. A player who is on turn must take a nonzero square number of matches from the pile. The winner is the one who makes the last move. Decide who has the winning strategy and give one such strategy.

KoMaL A Problems 2021/2022, A. 812

Two players play the following game: there are two heaps of tokens, and they take turns to pick some tokens from them. The winner of the game is the player who takes away the last token. If the number of tokens in the two heaps are $A$ and $B$ at a given moment, the player whose turn it is can take away a number of tokens that is a multiple of $A$ or a multiple of $B$ from one of the heaps. Find those pair of integers $(k,n)$ for which the second player has a winning strategy, if the initial number of tokens is $k$ in the first heap and $n$ in the second heap. [i]Proposed by Dömötör Pálvölgyi, Budapest[/i]

2018 Istmo Centroamericano MO, 2

Let $n> 1$ be an odd integer. On a square surface have been placed $n^2 - 1$ white slabs and a black slab on the center. Two workers $A$ and $B$ take turns removing them, betting that whoever removes black will lose. First $A$ picks a slab; if it has row number $i \ge (n + 1) / 2$, then it will remove all tiles from rows with number greater than or equal to$ i$, while if $i <(n + 1) / 2$, then it will remove all tiles from the rows with lesser number or equal to $i$. Proceed in a similar way with columns. Then $B$ chooses one of the remaining tiles and repeats the process. Determine who has a winning strategy and describe it. Note: Row and column numbering is ascending from top to bottom and from left to right.

2002 Abels Math Contest (Norwegian MO), 4

An integer is given $N> 1$. Arne and Britt play the following game: (1) Arne says a positive integer $A$. (2) Britt says an integer $B> 1$ that is either a divisor of $A$ or a multiple of $A$. ($A$ itself is a possibility.) (3) Arne says a new number $A$ that is either $B - 1, B$ or $B + 1$. The game continues by repeating steps 2 and 3. Britt wins if she is okay with being told the number $N$ before the $50$th has been said. Otherwise, Arne wins. a) Show that Arne has a winning strategy if $N = 10$. b) Show that Britt has a winning strategy if $N = 24$. c) For which $N$ does Britt have a winning strategy?

Estonia Open Senior - geometry, 2019.1.1

Juri and Mari play the following game. Juri starts by drawing a random triangle on a piece of paper. Mari then draws a line on the same paper that goes through the midpoint of one of the midsegments of the triangle. Then Juri adds another line that also goes through the midpoint of the same midsegment. These two lines divide the triangle into four pieces. Juri gets the piece with maximum area (or one of those with maximum area) and the piece with minimum area (or one of those with minimum area), while Mari gets the other two pieces. The player whose total area is bigger wins. Does either of the players have a winning strategy, and if so, who has it?

1997 Dutch Mathematical Olympiad, 3

a. View the second-degree quadratic equation $x^2+? x +? = 0$ Two players successively put an integer each at the location of a question mark. Show that the second player can always ensure that the quadratic gets two integer solutions. Note: we say that the quadratic also has two integer solutions, even when they are equal (for example if they are both equal to $3$). b.View the third-degree equation $x^3 +? x^2 +? x +? = 0$ Three players successively put an integer each at the location of a question mark. The equation appears to have three integer (possibly again the same) solutions. It is given that two players each put a $3$ in the place of a question mark. What number did the third player put? Determine that number and the place where it is placed and prove that only one number is possible.

2016 May Olympiad, 5

Rosa and Sara play with a triangle $ABC$, right at $B$. Rosa begins by marking two interior points of the hypotenuse $AC$, then Sara marks an interior point of the hypotenuse $AC$ different from those of Rosa. Then, from these three points the perpendiculars to the sides $AB$ and $BC$ are drawn, forming the following figure. [img]https://cdn.artofproblemsolving.com/attachments/9/9/c964bbacc4a5960bee170865cc43902410e504.png[/img] Sara wins if the area of the shaded surface is equal to the area of the unshaded surface, in other case wins Rosa. Determine who of the two has a winning strategy.

2024 Bundeswettbewerb Mathematik, 1

Arthur and Renate play a game on a $7 \times 7$ board. Arthur has two red tiles, initially placed on the cells in the bottom left and the upper right corner. Renate has two black tiles, initially placed on the cells in the bottom right and the upper left corner. In a move, a player can choose one of his two tiles and move them to a horizontally or vertically adjacent cell. The players alternate, with Arthur beginning. Arthur wins when both of his tiles are in horizontally or vertically adjacent cells after some number of moves. Can Renate prevent him from winning?

2022 May Olympiad, 4

Ana and Bruno have an $8 \times 8$ checkered board. Ana paints each of the $64$ squares with some color. Then Bruno chooses two rows and two columns on the board and looks at the $4$ squares where they intersect. Bruno's goal is for these $4$ squares to be the same color. How many colors, at least, must Ana use so that Bruno can't fulfill his objective? Show how you can paint the board with this amount of colors and explain because if you use less colors then Bruno can always fulfill his goal.

2005 Tournament of Towns, 6

John and James wish to divide $25$ coins, of denominations $1, 2, 3, \ldots , 25$ kopeks. In each move, one of them chooses a coin, and the other player decides who must take this coin. John makes the initial choice of a coin, and in subsequent moves, the choice is made by the player having more kopeks at the time. In the event that there is a tie, the choice is made by the same player in the preceding move. After all the coins have been taken, the player with more kokeps wins. Which player has a winning strategy? [i](6 points)[/i]

1995 Bulgaria National Olympiad, 3

Two players $A$ and $B$ take stones one after the other from a heap with $n \ge 2$ stones. $A$ begins the game and takes at least one stone, but no more than $n -1$ stones. Thereafter, a player on turn takes at least one, but no more than the other player has taken before him. The player who takes the last stone wins. Who of the players has a winning strategy?

2005 Cuba MO, 3

There are two piles of cards, one with $n$ cards and the other with $m$ cards. $A$ and $B$ play alternately, performing one of the following actions in each turn. following operations: a) Remove a card from a pile. b) Remove one card from each pile. c) Move a card from one pile to the other. Player $A$ always starts the game and whoever takes the last one letter wins . Determine if there is a winning strategy based on $m$ and $n$, so that one of the players following her can win always.

2018 Junior Balkan Team Selection Tests - Romania, 3

Alina and Bogdan play the following game. They have a heap and $330$ stones in it. They take turns. In one turn it is allowed to take from the heap exactly $1$, exactly $n$ or exactly $m$ stones. The player who takes the last stone wins. Before the beginning Alina says the number $n$, ($1 < n < 10$). After that Bogdan says the number $m$, ($m \ne n, 1 < m < 10$). Alina goes first. Which of the two players has a winning strategy? What if initially there are 2018 stones in the heap? adapted from a Belarus Olympiad problem

2019 Lusophon Mathematical Olympiad, 6

Two players Arnaldo and Betania play alternately, with Arnaldo being the first to play. Initially there are two piles of stones containing $x$ and $y$ stones respectively. In each play, it is possible to perform one of the following operations: 1. Choose two non-empty piles and take one stone from each pile. 2. Choose a pile with an odd amount of stones, take one of their stones and, if possible, split into two piles with the same amount of stones. The player who cannot perform either of operations 1 and 2 loses. Determine who has the winning strategy based on $x$ and $y$.

2017 Junior Balkan Team Selection Tests - Romania, 1

Alina and Bogdan play a game on a $2\times n$ rectangular grid ($n\ge 2$) whose sides of length $2$ are glued together to form a cylinder. Alternating moves, each player cuts out a unit square of the grid. A player loses if his/her move causes the grid to lose circular connection (two unit squares that only touch at a corner are considered to be disconnected). Suppose Alina makes the first move. Which player has a winning strategy?

2022 Switzerland Team Selection Test, 8

Johann and Nicole are playing a game on the coordinate plane. First, Johann draws any polygon $\mathcal{S}$ and then Nicole can shift $\mathcal{S}$ to wherever she wants. Johann wins if there exists a point with coordinates $(x, y)$ in the interior of $\mathcal{S}$, where $x$ and $y$ are coprime integers. Otherwise, Nicole wins. Determine who has a winning strategy.

2023 239 Open Mathematical Olympiad, 1

There are $n{}$ wise men in a hall and everyone sees each other. Each man will wear a black or white hat. The wise men should simultaneously write down on their piece of paper a guess about the color of their hat. If at least one does not guess, they will all be executed. The wise men can discuss a strategy before the test and they know that the layout of the hats will be chosen randomly from the set of all $2^n$ layouts. They want to choose their strategy so that the number of layouts for which everyone guesses correctly is as high as possible. What is this number equal to?

2015 Swedish Mathematical Competition, 6

Axel and Berta play the following games: On a board are a number of positive integers. One move consists of a player exchanging a number $x$ on the board for two positive integers y and $z$ (not necessarily different), such that $y + z = x$. The game ends when the numbers on the board are relatively coprime in pairs. The player who made the last move has then lost the game. At the beginning of the game, only the number $2015$ is on the board. The two players make do their moves in turn and Berta begins. One of the players has a winning strategy. Who, and why?

2017 Costa Rica - Final Round, 3

A game consists of a grid of $4\times 4$ and tiles of two colors (Yellow and White). A player chooses a type of token and gives it to the second player who places it where he wants, then the second player chooses a type of token and gives it to the first who places it where he wants, They continue in this way and the one who manages to form a line with three tiles of the same color wins (horizontal, vertical or diagonal and regardless of whether it is the tile you started with or not). Before starting the game, two yellow and two white pieces are already placed as shows the figure below. [img]https://cdn.artofproblemsolving.com/attachments/b/5/ba11377252c278c4154a8c3257faf363430ef7.png[/img] Yolanda and Xinia play a game. If Yolanda starts (choosing the token and giving it to Xinia for this to place) indicate if there is a winning strategy for either of the two players and, if any, describe the strategy.

2011 Costa Rica - Final Round, 3

The archipelago Barrantes - $n$ is a group of islands connected by bridges as follows: there are a main island (Humberto), in the first step I place an island below Humberto and one above from Humberto and I connect these 2 islands to Humberto. I put $2$ islands to the left of these $2$ new islands and I connect them with a bridge to the island that they have on their right. In the second step I take the last $2$ islands and I apply the same process that I applied to Humberto. In the third step I apply the same process to the $4$ new islands. We repeat this step n times we reflect the archipelago that we have on a vertical line to the right of Humberto. We connect Humberto with his reflection and so we have the archipelago Barrantes -$n$. However, the archipelago Barrantes -$n$ exists on a small planet cylindrical, so that the islands to the left of the archipelago are in fact the islands that are connected to the islands on the right. The figure shows the Barrantes archipelago -$2$, The islands at the edges are still numbered to show how the archipelago connects around the cylindrical world, the island numbered $1$ on the left is the same as the island numbered $1$ on the right. [img]https://cdn.artofproblemsolving.com/attachments/e/c/803d95ce742c2739729fdb4d74af59d4d0652f.png[/img] One day two bands of pirates arrive at the archipelago Barrantes - $n$: The pirates Black Beard and the Straw Hat Pirates. Blackbeard proposes a game to Straw Hat: The first player conquers an island, the next player must conquer an island connected to the island that was conquered in the previous turn (clearly not conquered on a previous shift). The one who cannot conquer any island in his turn loses. Straw Hat decides to give the first turn to Blackbeard. Prove that Straw Hat has a winning strategy for every $n$.

2011 Swedish Mathematical Competition, 5

Arne and Bertil play a game on an $11 \times 11$ grid. Arne starts. He has a game piece that is placed on the center od the grid at the beginning of the game. At each move he moves the piece one step horizontally or vertically. Bertil places a wall along each move any of an optional four squares. Arne is not allowed to move his piece through a wall. Arne wins if he manages to move the pice out of the board, while Bertil wins if he manages to prevent Arne from doing that. Who wins if from the beginning there are no walls on the game board and both players play optimally?

2018 Regional Olympiad of Mexico Southeast, 1

Lalo and Sergio play in a regular polygon of $n\geq 4$ sides. In his turn, Lalo paints a diagonal or side of pink, and in his turn Sergio paint a diagonal or side of orange. Wins the game who achieve paint the three sides of a triangle with his color, if none of the players can win, they game tie. Lalo starts playing. Determines all natural numbers $n$ such that one of the players have winning strategy.

2013 Cuba MO, 5

Three players $A, B$ and $C$ take turns taking stones from a pile of $N$ stones. They play in the order $A$, $B$, $C$, $A$, $B$, $C$, $....$, $A$ starts the game and the one who takes the last stone loses. Players $A$ and $C$ They form a team against $B$, they agree on a strategy joint. $B$ can take $1, 2, 3, 4$ or $5$ stones on each move, while that $A$ and $C$ can each draw $1, 2$ or $3$ stones in each turn. Determine for which values of $N$ have winning strategies $A$ and $C$ , and for what values the winning strategy is $B$'s.