This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 8

2019 AMC 8, 8

Gilda has a bag of marbles. She gives $20 \%$ of them to her friend Pedro. The, Gilda gives $10 \%$ of what is left to her other friend, Ebony. Finally, Gilda gives $25 \%$ of what is left in the bag to her brother. What percentage of her original bag does she have left? $\textbf{(A) } 20 \qquad\textbf{(B) } 33\tfrac{1}{3} \qquad\textbf{(C) } 38 \qquad\textbf{(D) } 45 \qquad\textbf{(E) } 54$

2023 AMC 12/AHSME, 1

Tags: word problem
Mrs. Jones is pouring orange juice for her 4 kids into 4 identical glasses. She fills the first 3 full, but only has enough orange juice to fill one third of the last glass. What fraction of a glass of orange juice does she need to pour from the 3 full glasses into the last glass so that all glasses have an equal amount of orange juice? $\textbf{(A) }\frac{1}{12}\qquad\textbf{(B) }\frac{1}{4}\qquad\textbf{(C) }\frac{1}{6}\qquad\textbf{(D) }\frac{1}{8}\qquad\textbf{(E) }\frac{2}{9}$

2008 ITest, 56

During the van ride from the Grand Canyon to the beach, Michael asks his dad about the costs of renewable energy resources. "How much more does it really cost for a family like ours to switch entirely to renewable energy?" Jerry explains, "Part of that depends on where the family lives. In the Western states, solar energy pays off more than it does where we live in the Southeast. But as technology gets better, costs of producing more photovoltaic power go down, so in just a few years more people will have reasonably inexpensive options for switching to clearner power sources. Even now most families could switch to biomass for between $\$200$ and $\$1000$ per year. The energy comes from sawdust, switchgrass, and even landfill gas. We pay that premium ourselves, but some families operate on a tighter budget, or don't understand the alternatives yet." "Ew, landfill gas!" Alexis complains mockingly. Wanting to save her own energy, Alexis decides to take a nap. She falls asleep and dreams of walking around a $2-\text{D}$ coordinate grid, looking for a wormhole that she believes will transport her to the beach (bypassing the time spent in the family van). In her dream, Alexis finds herself holding a device that she recognizes as a $\textit{tricorder}$ from one of the old $\textit{Star Trek}$ t.v. series. The tricorder has a button labeled "wormhole" and when Alexis presses the button, a computerized voice from the tricorder announces, "You are at the origin. Distance to the wormhole is $2400$ units. Your wormhole distance allotment is $\textit{two}$."' Unsure as to how to reach, Alexis begins walking forward. As she walks, the tricorder displays at all times her distance from her starting point at the origin. When Alexis is $2400$ units from the origin, she again presses the "wormhole" buttom. The same computerized voice as before begins, "Distance to the origin is $2400$ units. Distance to the wormhole is $3840$ units. Your wormhole distance allotment is $\textit{two}$." Alexis begins to feel disoriented. She wonders what is means that her $\textit{wormhole distance allotment is two}$, and why that number didn't change as she pushed the button. She puts her hat down to mark her position, then wanders aroud a bit. The tricorder shows her two readings as she walks. The first she recognizes as her distance to the origin. The second reading clearly indicates her distance from the point where her hat lies - where she last pressed the button that gave her distance to the wormhole. Alexis picks up her hat and begins walking around. Eventually Alexis finds herself at a spot $2400$ units from the origin and $3840$ units from where she last pressed the button. Feeling hopeful, Alexis presses the tricorder's wormhole button again. Nothing happens. She presses it again, and again nothing happens. "Oh," she thinks, "my wormhole allotment was $\textit{two}$, and I used it up already!" Despair fills poor Alexis who isn't sure what a wormhole looks like or how she's supposed to find it. Then she takes matters into her own hands. Alexis sits down and scribbles some notes and realizes where the wormhole must be. Alexis gets up and runs straight from her "third position" to the wormhole. As she gets closer, she sees the wormhole, which looks oddly like a huge scoop of icecream. Alexis runs into the wormhole, then wakes up. How many units did Alexis run from her third position to the wormhole?

2008 ITest, 2

Tags: word problem
One day while Tony plays in the back yard of the Kubik's home, he wonders about the width of the back yard, which is in the shape of a rectangle. A row of trees spans the width of the back of the yard by the fence, and Tony realizes that all the trees have almost exactly the same diameter, and the trees look equally spaced. Tony fetches a tape measure from the garage and measures a distance of almost exactly $12$ feet between a consecutive pair of trees. Tony realizes the need to include the width of the trees in his measurements. Unsure as to how to do this, he measures the distance between the centers of the trees, which comes out to be around $15$ feet. He then measures $2$ feet to either side of the first and last trees in the row before the ends of the yard. Tony uses these measurements to estimate the width of the yard. If there are six trees in the row of trees, what is Tony's estimate in feet? [asy] size(400); defaultpen(linewidth(0.8)); draw((0,-3)--(0,3)); int d=8; for(int i=0;i<=5;i=i+1) { draw(circle(7/2+d*i,3/2)); } draw((5*d+7,-3)--(5*d+7,3)); draw((0,0)--(2,0),Arrows(size=7)); draw((5,0)--(2+d,0),Arrows(size=7)); draw((7/2+d,0)--(7/2+2*d,0),Arrows(size=7)); label("$2$",(1,0),S); label("$12$",((7+d)/2,0),S); label("$15$",((7+3*d)/2,0),S); [/asy]

2023 AMC 10, 1

Tags: word problem
Mrs. Jones is pouring orange juice for her 4 kids into 4 identical glasses. She fills the first 3 full, but only has enough orange juice to fill one third of the last glass. What fraction of a glass of orange juice does she need to pour from the 3 full glasses into the last glass so that all glasses have an equal amount of orange juice? $\textbf{(A) }\frac{1}{12}\qquad\textbf{(B) }\frac{1}{4}\qquad\textbf{(C) }\frac{1}{6}\qquad\textbf{(D) }\frac{1}{8}\qquad\textbf{(E) }\frac{2}{9}$

1959 AMC 12/AHSME, 9

A farmer divides his herd of $n$ cows among his four sons so that one son gets one-half the herd, a second son, one-fourth, a third son, one-fifth, and the fourth son, 7 cows. Then $n$ is: $ \textbf{(A)}\ 80 \qquad\textbf{(B)}\ 100\qquad\textbf{(C)}\ 140\qquad\textbf{(D)}\ 180\qquad\textbf{(E)}\ 240 $

2023 AMC 12/AHSME, 2

Tags: word problem
The weight of $\frac 13$ of a large pizza together with $3 \frac 12$ cups of orange slices is the same as the weight of $\frac 34$ of a large pizza together with $\frac 12$ cup of orange slices. A cup of orange slices weighs $\frac 14$ of a pound. What is the weight, in pounds, of a large pizza? $\textbf{(A)}~1\frac45\qquad\textbf{(B)}~2\qquad\textbf{(C)}~2\frac25\qquad\textbf{(D)}~3\qquad\textbf{(E)}~3\frac35$

2023 AMC 10, 2

Tags: word problem
The weight of $\frac 13$ of a large pizza together with $3 \frac 12$ cups of orange slices is the same as the weight of $\frac 34$ of a large pizza together with $\frac 12$ cup of orange slices. A cup of orange slices weighs $\frac 14$ of a pound. What is the weight, in pounds, of a large pizza? $\textbf{(A)}~1\frac45\qquad\textbf{(B)}~2\qquad\textbf{(C)}~2\frac25\qquad\textbf{(D)}~3\qquad\textbf{(E)}~3\frac35$