This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2009 F = Ma, 20

Tags:
Consider a completely inelastic collision between two lumps of space goo. Lump 1 has mass $m$ and originally moves directly north with a speed $v_\text{0}$. Lump 2 has mass $3m$ and originally moves directly east with speed $v_\text{0}/2$. What is the final speed of the masses after the collision? Ignore gravity, and assume the two lumps stick together after the collision. (A) $7/16 \ v_\text{0}$ (B) $\sqrt{5}/8 \ v_\text{0}$ (C) $\sqrt{13}/8 \ v_\text{0}$ (D) $5/8 \ v_\text{0}$ (E) $\sqrt{13/8} \ v_\text{0}$

2004 China Team Selection Test, 2

Let $p_1, p_2, \ldots, p_{25}$ are primes which don’t exceed 2004. Find the largest integer $T$ such that every positive integer $\leq T$ can be expressed as sums of distinct divisors of $(p_1\cdot p_2 \cdot \ldots \cdot p_{25})^{2004}.$

LMT Team Rounds 2021+, 11

The LHS Math Team is going to have a Secret Santa event! Nine members are going to participate, and each person must give exactly one gift to a specific recipient so that each person receives exactly one gift. But to make it less boring, no pairs of people can just swap gifts. The number of ways to assign who gives gifts to who in the Secret Santa Exchange with these constraints is $N$. Find the remainder when $N$ is divided by $1000$.

2022 MOAA, 14

Find the greatest prime number $p$ for which there exists a prime number $q$ such that $p$ divides $4^q + 1$ and $q$ divides $4^p + 1$.

LMT Guts Rounds, 15

Tags:
Determine the number of ordered pairs $(x,y)$ with $x$ and $y$ integers between $-5$ and $5,$ inclusive, such that $(x+y)(x+3y)=(x+2y)^2.$

2023 SG Originals, Q3

Bugs Bunny plays a game in the Euclidean plane. At the $n$-th minute $(n \geq 1)$, Bugs Bunny hops a distance of $F_n$ in the North, South, East, or West direction, where $F_n$ is the $n$-th Fibonacci number (defined by $F_1 = F_2 =1$ and $F_n = F_{n-1} + F_{n-2}$ for $n \geq 3$). If the first two hops were perpendicular, prove that Bugs Bunny can never return to where he started. [i]Proposed by Dylan Toh[/i]

2002 Denmark MO - Mohr Contest, 3

Two positive integers have the sum $2002$. Can $2002$ divide their product?

2014 Tajikistan Team Selection Test, 2

Let $M$be an interior point of triangle $ABC$. Let the line $AM$ intersect the circumcircle of the triangle $MBC$ for the second time at point $D$, the line $BM$ intersect the circumcircle of the triangle $MCA$ for the second time at point $E$, and the line $CM$ intersect the circumcircle of the triangle $MAB$ for the second time at point $F$. Prove that $\frac{AD}{MD} + \frac{BE}{ME} + \frac{CF}{MF} \geq \frac{9}{2}$. [i]Proposed by Nairy Sedrakyan[/i]

2010 Baltic Way, 20

Determine all positive integers $n$ for which there exists an infinite subset $A$ of the set $\mathbb{N}$ of positive integers such that for all pairwise distinct $a_1,\ldots , a_n \in A$ the numbers $a_1+\ldots +a_n$ and $a_1a_2\ldots a_n$ are coprime.

1994 AMC 8, 25

Tags:
Find the sum of the digits in the answer to $\underbrace{9999\cdots 99}_{94\text{ nines}} \times \underbrace{4444\cdots 44}_{94\text{ fours}}$ where a string of $94$ nines is multiplied by a string of $94$ fours. $\text{(A)}\ 846 \qquad \text{(B)}\ 855 \qquad \text{(C)}\ 945 \qquad \text{(D)}\ 954 \qquad \text{(E)}\ 1072$

2016 Online Math Open Problems, 2

Tags:
Let $x$, $y$, and $z$ be real numbers such that $x+y+z=20$ and $x+2y+3z=16$. What is the value of $x+3y+5z$? [i]Proposed by James Lin[/i]

2013 Germany Team Selection Test, 2

Call admissible a set $A$ of integers that has the following property: If $x,y \in A$ (possibly $x=y$) then $x^2+kxy+y^2 \in A$ for every integer $k$. Determine all pairs $m,n$ of nonzero integers such that the only admissible set containing both $m$ and $n$ is the set of all integers. [i]Proposed by Warut Suksompong, Thailand[/i]

1974 All Soviet Union Mathematical Olympiad, 204

Tags: area , geometry , minimum
Given a triangle $ABC$ with the are $1$. Let $A',B'$ and $C' $ are the midpoints of the sides $[BC], [CA]$ and $[AB]$ respectively. What is the minimal possible area of the common part of two triangles $A'B'C'$ and $KLM$, if the points $K,L$ and $M$ are lying on the segments $[AB'], [CA']$ and $[BC']$ respectively?

2007 AMC 12/AHSME, 18

Tags:
Let $ a,b,$ and $ c$ be digits with $ a\ne0.$ The three-digit integer $ abc$ lies one third of the way from the square of a positive integer to the square of the next larger integer. The integer $ acb$ lies two thirds of the way between the same two squares. What is $ a \plus{} b \plus{} c$? $ \textbf{(A)}\ 10 \qquad \textbf{(B)}\ 13 \qquad \textbf{(C)}\ 16 \qquad \textbf{(D)}\ 18 \qquad \textbf{(E)}\ 21$

1987 IMO Shortlist, 17

Prove that there exists a four-coloring of the set $M = \{1, 2, \cdots, 1987\}$ such that any arithmetic progression with $10$ terms in the set $M$ is not monochromatic. [b][i]Alternative formulation[/i][/b] Let $M = \{1, 2, \cdots, 1987\}$. Prove that there is a function $f : M \to \{1, 2, 3, 4\}$ that is not constant on every set of $10$ terms from $M$ that form an arithmetic progression. [i]Proposed by Romania[/i]

2010 Gheorghe Vranceanu, 2

Let be three complex numbers $ z,t,u, $ whose affixes in the complex plane form a triangle $ \triangle . $ [b]a)[/b] Let be three non-complex numbers $ a,b,c $ that sum up to $ 0. $ Prove that $$ |az+bt+cu|=|at+bu+cz|=|au+bz+ct| $$ if $ \triangle $ is equilateral. [b]b)[/b] Show that $ \triangle $ is equilateral if $$ |z+2t-3u|=|t+2u-3z|=|u+2z-3t| . $$

2014 Middle European Mathematical Olympiad, 4

For integers $n \ge k \ge 0$ we define the [i]bibinomial coefficient[/i] $\left( \binom{n}{k} \right)$ by \[ \left( \binom{n}{k} \right) = \frac{n!!}{k!!(n-k)!!} .\] Determine all pairs $(n,k)$ of integers with $n \ge k \ge 0$ such that the corresponding bibinomial coefficient is an integer. [i]Remark: The double factorial $n!!$ is defined to be the product of all even positive integers up to $n$ if $n$ is even and the product of all odd positive integers up to $n$ if $n$ is odd. So e.g. $0!! = 1$, $4!! = 2 \cdot 4 = 8$, and $7!! = 1 \cdot 3 \cdot 5 \cdot 7 = 105$.[/i]

2008 Kyiv Mathematical Festival, 2

Aladdin has a set of coins with weights $ 1, 2, \ldots, 20$ grams. He can ask Genie about any two coins from the set which one is heavier, but he should pay Genie some other coin from the set before. (So, with every question the set of coins becomes smaller.) Can Aladdin find two coins from the set with total weight at least $ 28$ grams?

PEN P Problems, 24

Show that any integer can be expressed as the form $a^{2}+b^{2}-c^{2}$, where $a, b, c \in \mathbb{Z}$.

2012 AMC 10, 10

Tags:
Mary divides a circle into $12$ sectors. The central angles of these sectors, measured in degrees, are all integers and they form an arithmetic sequence. What is the degree measure of the smallest possible sector angle? $ \textbf{(A)}\ 5\qquad\textbf{(B)}\ 6\qquad\textbf{(C)}\ 8\qquad\textbf{(D)}\ 10\qquad\textbf{(E)}\ 12 $

2023 Philippine MO, 7

A set of positive integers is said to be [i]pilak[/i] if it can be partitioned into 2 disjoint subsets $F$ and $T$, each with at least $2$ elements, such that the elements of $F$ are consecutive Fibonacci numbers, and the elements of $T$ are consecutive triangular numbers. Find all positive integers $n$ such that the set containing all the positive divisors of $n$ except $n$ itself is pilak.

2000 Swedish Mathematical Competition, 4

The vertices of a triangle are three-dimensional lattice points. Show that its area is at least $\frac12$.

2014 ELMO Shortlist, 9

Tags: inequalities
Let $a$, $b$, $c$ be positive reals. Prove that \[ \sqrt{\frac{a^2(bc+a^2)}{b^2+c^2}}+\sqrt{\frac{b^2(ca+b^2)}{c^2+a^2}}+\sqrt{\frac{c^2(ab+c^2)}{a^2+b^2}}\ge a+b+c. \][i]Proposed by Robin Park[/i]

2004 Irish Math Olympiad, 5

Suppose $p,q$ are distinct primes and $S$ is a subset of $\{1,2,\dots ,p-1\}$. Let $N(S)$ denote the number of solutions to the equation $$\sum_{i=1}^{q}x_i\equiv 0\mod p$$ where $x_i\in S$, $i=1,2,\dots ,q$. Prove that $N(S)$ is a multiple of $q$.

MBMT Guts Rounds, 2022

[hide=D stands for Dedekind, Z stands for Zermelo]they had two problem sets under those two names[/hide] [u]Set 1[/u] [b]D1 / Z1.[/b] What is $1 + 2 \cdot 3$? [b]D2.[/b] What is the average of the first $9$ positive integers? [b]D3 / Z2.[/b] A square of side length $2$ is cut into $4$ congruent squares. What is the perimeter of one of the $4$ squares? [b]D4.[/b] Find the ratio of a circle’s circumference squared to the area of the circle. [b]D5 / Z3.[/b] $6$ people split a bag of cookies such that they each get $21$ cookies. Kyle comes and demands his share of cookies. If the $7$ people then re-split the cookies equally, how many cookies does Kyle get? [u]Set 2[/u] [b]D6.[/b] How many prime numbers are perfect squares? [b]D7.[/b] Josh has an unfair $4$-sided die numbered $1$ through $4$. The probability it lands on an even number is twice the probability it lands on an odd number. What is the probability it lands on either $1$ or $3$? [b]D8.[/b] If Alice consumes $1000$ calories every day and burns $500$ every night, how many days will it take for her to first reach a net gain of $5000$ calories? [b]D9 / Z4.[/b] Blobby flips $4$ coins. What is the probability he sees at least one heads and one tails? [b]D10.[/b] Lillian has $n$ jars and $48$ marbles. If George steals one jar from Lillian, she can fill each jar with $8$ marbles. If George steals $3$ jars, Lillian can fill each jar to maximum capacity. How many marbles can each jar fill? [u]Set 3[/u] [b]D11 / Z6.[/b] How many perfect squares less than $100$ are odd? [b]D12.[/b] Jash and Nash wash cars for cash. Jash gets $\$6$ for each car, while Nash gets $\$11$ per car. If Nash has earned $\$1$ more than Jash, what is the least amount of money that Nash could have earned? [b]D13 / Z5.[/b] The product of $10$ consecutive positive integers ends in $3$ zeros. What is the minimum possible value of the smallest of the $10$ integers? [b]D14 / Z7.[/b] Guuce continually rolls a fair $6$-sided dice until he rolls a $1$ or a $6$. He wins if he rolls a $6$, and loses if he rolls a $1$. What is the probability that Guuce wins? [b]D15 / Z8.[/b] The perimeter and area of a square with integer side lengths are both three digit integers. How many possible values are there for the side length of the square? PS. You should use hide for answers. D.16-30/Z.9-14, 17, 26-30 problems have been collected [url=https://artofproblemsolving.com/community/c3h2916250p26045695]here [/url]and Z.15-25 [url=https://artofproblemsolving.com/community/c3h2916258p26045774]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].