This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 83

1979 IMO Shortlist, 18

Let $m$ positive integers $a_1, \dots , a_m$ be given. Prove that there exist fewer than $2^m$ positive integers $b_1, \dots , b_n$ such that all sums of distinct $b_k$’s are distinct and all $a_i \ (i \leq m)$ occur among them.

2014 Belarus Team Selection Test, 2

Let $n$ be an positive integer. Find the smallest integer $k$ with the following property; Given any real numbers $a_1 , \cdots , a_d $ such that $a_1 + a_2 + \cdots + a_d = n$ and $0 \le a_i \le 1$ for $i=1,2,\cdots ,d$, it is possible to partition these numbers into $k$ groups (some of which may be empty) such that the sum of the numbers in each group is at most $1$.

1997 Romania Team Selection Test, 2

Find the number of sets $A$ containing $9$ positive integers with the following property: for any positive integer $n\le 500$, there exists a subset $B\subset A$ such that $\sum_{b\in B}{b}=n$. [i]Bogdan Enescu & Dan Ismailescu[/i]

2014 Taiwan TST Round 2, 2

Let $r$ be a positive integer, and let $a_0 , a_1 , \cdots $ be an infinite sequence of real numbers. Assume that for all nonnegative integers $m$ and $s$ there exists a positive integer $n \in [m+1, m+r]$ such that \[ a_m + a_{m+1} +\cdots +a_{m+s} = a_n + a_{n+1} +\cdots +a_{n+s} \] Prove that the sequence is periodic, i.e. there exists some $p \ge 1 $ such that $a_{n+p} =a_n $ for all $n \ge 0$.

1989 IMO, 1

Prove that in the set $ \{1,2, \ldots, 1989\}$ can be expressed as the disjoint union of subsets $ A_i, \{i \equal{} 1,2, \ldots, 117\}$ such that [b]i.)[/b] each $ A_i$ contains 17 elements [b]ii.)[/b] the sum of all the elements in each $ A_i$ is the same.

2009 China Team Selection Test, 6

Determine whether there exists an arithimethical progression consisting of 40 terms and each of whose terms can be written in the form $ 2^m \plus{} 3^n$ or not. where $ m,n$ are nonnegative integers.

2000 IMO Shortlist, 6

Let $ p$ and $ q$ be relatively prime positive integers. A subset $ S$ of $ \{0, 1, 2, \ldots \}$ is called [b]ideal[/b] if $ 0 \in S$ and for each element $ n \in S,$ the integers $ n \plus{} p$ and $ n \plus{} q$ belong to $ S.$ Determine the number of ideal subsets of $ \{0, 1, 2, \ldots \}.$

1992 IMO Shortlist, 15

Does there exist a set $ M$ with the following properties? [i](i)[/i] The set $ M$ consists of 1992 natural numbers. [i](ii)[/i] Every element in $ M$ and the sum of any number of elements have the form $ m^k$ $ (m, k \in \mathbb{N}, k \geq 2).$

2014 Taiwan TST Round 1, 2

Let $n$ be an positive integer. Find the smallest integer $k$ with the following property; Given any real numbers $a_1 , \cdots , a_d $ such that $a_1 + a_2 + \cdots + a_d = n$ and $0 \le a_i \le 1$ for $i=1,2,\cdots ,d$, it is possible to partition these numbers into $k$ groups (some of which may be empty) such that the sum of the numbers in each group is at most $1$.

1983 IMO Longlists, 27

Let $a,b$ and $c$ be positive integers, no two of which have a common divisor greater than $1$. Show that $2abc-ab-bc-ca$ is the largest integer which cannot be expressed in the form $xbc+yca+zab$, where $x,y,z$ are non-negative integers.

2009 China Team Selection Test, 6

Determine whether there exists an arithimethical progression consisting of 40 terms and each of whose terms can be written in the form $ 2^m \plus{} 3^n$ or not. where $ m,n$ are nonnegative integers.

1976 IMO Longlists, 48

The polynomial $1976(x+x^2+ \cdots +x^n)$ is decomposed into a sum of polynomials of the form $a_1x + a_2x^2 + \cdots + a_nx^n$, where $a_1, a_2, \ldots , a_n$ are distinct positive integers not greater than $n$. Find all values of $n$ for which such a decomposition is possible.

1995 Miklós Schweitzer, 5

Let A be a subset of the set $\{1,2, ...,n\}$ with at least $100\sqrt n$ elements. Prove that there is a four-element arithmetic sequence in which each element is the sum of two different elements of the set A.

2014 Brazil Team Selection Test, 2

Let $n$ be an positive integer. Find the smallest integer $k$ with the following property; Given any real numbers $a_1 , \cdots , a_d $ such that $a_1 + a_2 + \cdots + a_d = n$ and $0 \le a_i \le 1$ for $i=1,2,\cdots ,d$, it is possible to partition these numbers into $k$ groups (some of which may be empty) such that the sum of the numbers in each group is at most $1$.

2014 Peru IMO TST, 16

Let $n$ be a positive integer, and let $A$ be a subset of $\{ 1,\cdots ,n\}$. An $A$-partition of $n$ into $k$ parts is a representation of n as a sum $n = a_1 + \cdots + a_k$, where the parts $a_1 , \cdots , a_k $ belong to $A$ and are not necessarily distinct. The number of different parts in such a partition is the number of (distinct) elements in the set $\{ a_1 , a_2 , \cdots , a_k \} $. We say that an $A$-partition of $n$ into $k$ parts is optimal if there is no $A$-partition of $n$ into $r$ parts with $r<k$. Prove that any optimal $A$-partition of $n$ contains at most $\sqrt[3]{6n}$ different parts.

1996 IMO Shortlist, 3

Let $ k,m,n$ be integers such that $ 1 < n \leq m \minus{} 1 \leq k.$ Determine the maximum size of a subset $ S$ of the set $ \{1,2,3, \ldots, k\minus{}1,k\}$ such that no $ n$ distinct elements of $ S$ add up to $ m.$

1989 IMO Longlists, 68

Prove that in the set $ \{1,2, \ldots, 1989\}$ can be expressed as the disjoint union of subsets $ A_i, \{i \equal{} 1,2, \ldots, 117\}$ such that [b]i.)[/b] each $ A_i$ contains 17 elements [b]ii.)[/b] the sum of all the elements in each $ A_i$ is the same.

2016 Belarus Team Selection Test, 3

Let $S$ be a nonempty set of positive integers. We say that a positive integer $n$ is [i]clean[/i] if it has a unique representation as a sum of an odd number of distinct elements from $S$. Prove that there exist infinitely many positive integers that are not clean.

2015 IMO Shortlist, C6

Let $S$ be a nonempty set of positive integers. We say that a positive integer $n$ is [i]clean[/i] if it has a unique representation as a sum of an odd number of distinct elements from $S$. Prove that there exist infinitely many positive integers that are not clean.

1992 IMO Longlists, 29

Show that in the plane there exists a convex polygon of 1992 sides satisfying the following conditions: [i](i)[/i] its side lengths are $ 1, 2, 3, \ldots, 1992$ in some order; [i](ii)[/i] the polygon is circumscribable about a circle. [i]Alternative formulation:[/i] Does there exist a 1992-gon with side lengths $ 1, 2, 3, \ldots, 1992$ circumscribed about a circle? Answer the same question for a 1990-gon.

2008 Germany Team Selection Test, 3

Let $ X$ be a set of 10,000 integers, none of them is divisible by 47. Prove that there exists a 2007-element subset $ Y$ of $ X$ such that $ a \minus{} b \plus{} c \minus{} d \plus{} e$ is not divisible by 47 for any $ a,b,c,d,e \in Y.$ [i]Author: Gerhard Wöginger, Netherlands[/i]

2014 France Team Selection Test, 1

Let $n$ be an positive integer. Find the smallest integer $k$ with the following property; Given any real numbers $a_1 , \cdots , a_d $ such that $a_1 + a_2 + \cdots + a_d = n$ and $0 \le a_i \le 1$ for $i=1,2,\cdots ,d$, it is possible to partition these numbers into $k$ groups (some of which may be empty) such that the sum of the numbers in each group is at most $1$.

1997 Pre-Preparation Course Examination, 1

Let $ k,m,n$ be integers such that $ 1 < n \leq m \minus{} 1 \leq k.$ Determine the maximum size of a subset $ S$ of the set $ \{1,2,3, \ldots, k\minus{}1,k\}$ such that no $ n$ distinct elements of $ S$ add up to $ m.$

2014 France Team Selection Test, 1

Let $n$ be an positive integer. Find the smallest integer $k$ with the following property; Given any real numbers $a_1 , \cdots , a_d $ such that $a_1 + a_2 + \cdots + a_d = n$ and $0 \le a_i \le 1$ for $i=1,2,\cdots ,d$, it is possible to partition these numbers into $k$ groups (some of which may be empty) such that the sum of the numbers in each group is at most $1$.

2012 USA TSTST, 1

Find all infinite sequences $a_1, a_2, \ldots$ of positive integers satisfying the following properties: (a) $a_1 < a_2 < a_3 < \cdots$, (b) there are no positive integers $i$, $j$, $k$, not necessarily distinct, such that $a_i+a_j=a_k$, (c) there are infinitely many $k$ such that $a_k = 2k-1$.