Found problems: 83
2017 Romanian Master of Mathematics, 1
[b](a)[/b] Prove that every positive integer $n$ can be written uniquely in the form \[n=\sum_{j=1}^{2k+1}(-1)^{j-1}2^{m_j},\] where $k\geq 0$ and $0\le m_1<m_2\cdots <m_{2k+1}$ are integers.
This number $k$ is called [i]weight[/i] of $n$.
[b](b)[/b] Find (in closed form) the difference between the number of positive integers at most $2^{2017}$ with even weight and the number of positive integers at most $2^{2017}$ with odd weight.
2016 HMIC, 5
Let $S = \{a_1, \ldots, a_n \}$ be a finite set of positive integers of size $n \ge 1$, and let $T$ be the set of all positive integers that can be expressed as sums of perfect powers (including $1$) of distinct numbers in $S$, meaning
\[ T = \left\{ \sum_{i=1}^n a_i^{e_i} \mid e_1, e_2, \dots, e_n \ge 0 \right\}. \]
Show that there is a positive integer $N$ (only depending on $n$) such that $T$ contains no arithmetic progression of length $N$.
[i]Yang Liu[/i]
2014 Germany Team Selection Test, 1
Let $n$ be an positive integer. Find the smallest integer $k$ with the following property; Given any real numbers $a_1 , \cdots , a_d $ such that $a_1 + a_2 + \cdots + a_d = n$ and $0 \le a_i \le 1$ for $i=1,2,\cdots ,d$, it is possible to partition these numbers into $k$ groups (some of which may be empty) such that the sum of the numbers in each group is at most $1$.
2014 German National Olympiad, 3
Given two positive integers $n$ and $k$, we say that $k$ is [i]$n$-ergetic[/i] if:
However the elements of $M=\{1,2,\ldots, k\}$ are coloured in red and green, there exist $n$ not necessarily distinct integers of the same colour whose sum is again an element of $M$ of the same colour. For each positive integer $n$, determine the least $n$-ergetic integer, if it exists.
Russian TST 2014, P2
Let $n$ be a positive integer, and let $A$ be a subset of $\{ 1,\cdots ,n\}$. An $A$-partition of $n$ into $k$ parts is a representation of n as a sum $n = a_1 + \cdots + a_k$, where the parts $a_1 , \cdots , a_k $ belong to $A$ and are not necessarily distinct. The number of different parts in such a partition is the number of (distinct) elements in the set $\{ a_1 , a_2 , \cdots , a_k \} $.
We say that an $A$-partition of $n$ into $k$ parts is optimal if there is no $A$-partition of $n$ into $r$ parts with $r<k$. Prove that any optimal $A$-partition of $n$ contains at most $\sqrt[3]{6n}$ different parts.
2012 Romanian Master of Mathematics, 3
Each positive integer is coloured red or blue. A function $f$ from the set of positive integers to itself has the following two properties:
(a) if $x\le y$, then $f(x)\le f(y)$; and
(b) if $x,y$ and $z$ are (not necessarily distinct) positive integers of the same colour and $x+y=z$, then $f(x)+f(y)=f(z)$.
Prove that there exists a positive number $a$ such that $f(x)\le ax$ for all positive integers $x$.
[i](United Kingdom) Ben Elliott[/i]
2020 Olympic Revenge, 4
Let $n$ be a positive integer and $A$ a set of integers such that the set $\{x = a + b\ |\ a, b \in A\}$ contains $\{1^2, 2^2, \dots, n^2\}$. Prove that there is a positive integer $N$ such that if $n \ge N$, then $|A| > n^{0.666}$.
1990 IMO Longlists, 16
We call an integer $k \geq 1$ having property $P$, if there exists at least one integer $m \geq 1$ which cannot be expressed in the form $m = \varepsilon_1 z_1^k + \varepsilon_2 z_2^k + \cdots + \varepsilon_{2k} z_{2k}^k $ , where $z_i$ are nonnegative integer and $\varepsilon _i = 1$ or $-1$, $i = 1, 2, \ldots, 2k$. Prove that there are infinitely many integers $k$ having the property $P.$
2013 IMO Shortlist, C5
Let $r$ be a positive integer, and let $a_0 , a_1 , \cdots $ be an infinite sequence of real numbers. Assume that for all nonnegative integers $m$ and $s$ there exists a positive integer $n \in [m+1, m+r]$ such that
\[ a_m + a_{m+1} +\cdots +a_{m+s} = a_n + a_{n+1} +\cdots +a_{n+s} \]
Prove that the sequence is periodic, i.e. there exists some $p \ge 1 $ such that $a_{n+p} =a_n $ for all $n \ge 0$.
1990 IMO Longlists, 3
The integer $ 9$ can be written as a sum of two consecutive integers: $ 9 \equal{} 4\plus{}5.$ Moreover, it can be written as a sum of (more than one) consecutive positive integers in exactly two ways: $ 9 \equal{} 4\plus{}5 \equal{} 2\plus{}3\plus{}4.$ Is there an integer that can be written as a sum of $ 1990$ consecutive integers and that can be written as a sum of (more than one) consecutive positive integers in exactly $ 1990$ ways?
2014 IMO Shortlist, N1
Let $n \ge 2$ be an integer, and let $A_n$ be the set \[A_n = \{2^n - 2^k\mid k \in \mathbb{Z},\, 0 \le k < n\}.\] Determine the largest positive integer that cannot be written as the sum of one or more (not necessarily distinct) elements of $A_n$ .
[i]Proposed by Serbia[/i]
2025 China Team Selection Test, 15
Let \( X \) be a finite set of real numbers, \( d \) be a real number, and \(\lambda_1, \lambda_2, \cdots, \lambda_{2025}\) be 2025 non-zero real numbers. Define
\[A =
\left\{
(x_1, x_2, \cdots, x_{2025}) : x_1, x_2, \cdots, x_{2025} \in X \text{ and } \sum_{i=1}^{2025} \lambda_i x_i = d
\right\},\]
\[B =
\left\{
(x_1, x_2, \cdots, x_{2024}) : x_1, x_2, \cdots, x_{2024} \in X \text{ and } \sum_{i=1}^{2024} (-1)^i x_i = 0
\right\},\]
\[C =
\left\{
(x_1, x_2, \cdots, x_{2026}) : x_1, x_2, \cdots, x_{2026} \in X \text{ and } \sum_{i=1}^{2026} (-1)^i x_i = 0
\right\}.\]
Show that \( |A|^2 \leq |B| \cdot |C| \).
2014 India IMO Training Camp, 3
Let $r$ be a positive integer, and let $a_0 , a_1 , \cdots $ be an infinite sequence of real numbers. Assume that for all nonnegative integers $m$ and $s$ there exists a positive integer $n \in [m+1, m+r]$ such that
\[ a_m + a_{m+1} +\cdots +a_{m+s} = a_n + a_{n+1} +\cdots +a_{n+s} \]
Prove that the sequence is periodic, i.e. there exists some $p \ge 1 $ such that $a_{n+p} =a_n $ for all $n \ge 0$.
2008 Germany Team Selection Test, 3
Let $ X$ be a set of 10,000 integers, none of them is divisible by 47. Prove that there exists a 2007-element subset $ Y$ of $ X$ such that $ a \minus{} b \plus{} c \minus{} d \plus{} e$ is not divisible by 47 for any $ a,b,c,d,e \in Y.$
[i]Author: Gerhard Wöginger, Netherlands[/i]
2014 France Team Selection Test, 1
Let $n$ be an positive integer. Find the smallest integer $k$ with the following property; Given any real numbers $a_1 , \cdots , a_d $ such that $a_1 + a_2 + \cdots + a_d = n$ and $0 \le a_i \le 1$ for $i=1,2,\cdots ,d$, it is possible to partition these numbers into $k$ groups (some of which may be empty) such that the sum of the numbers in each group is at most $1$.
1992 IMO Shortlist, 8
Show that in the plane there exists a convex polygon of 1992 sides satisfying the following conditions:
[i](i)[/i] its side lengths are $ 1, 2, 3, \ldots, 1992$ in some order;
[i](ii)[/i] the polygon is circumscribable about a circle.
[i]Alternative formulation:[/i] Does there exist a 1992-gon with side lengths $ 1, 2, 3, \ldots, 1992$ circumscribed about a circle? Answer the same question for a 1990-gon.
2014 France Team Selection Test, 1
Let $n$ be an positive integer. Find the smallest integer $k$ with the following property; Given any real numbers $a_1 , \cdots , a_d $ such that $a_1 + a_2 + \cdots + a_d = n$ and $0 \le a_i \le 1$ for $i=1,2,\cdots ,d$, it is possible to partition these numbers into $k$ groups (some of which may be empty) such that the sum of the numbers in each group is at most $1$.
2014 Taiwan TST Round 2, 5
Let $n$ be a positive integer, and let $A$ be a subset of $\{ 1,\cdots ,n\}$. An $A$-partition of $n$ into $k$ parts is a representation of n as a sum $n = a_1 + \cdots + a_k$, where the parts $a_1 , \cdots , a_k $ belong to $A$ and are not necessarily distinct. The number of different parts in such a partition is the number of (distinct) elements in the set $\{ a_1 , a_2 , \cdots , a_k \} $.
We say that an $A$-partition of $n$ into $k$ parts is optimal if there is no $A$-partition of $n$ into $r$ parts with $r<k$. Prove that any optimal $A$-partition of $n$ contains at most $\sqrt[3]{6n}$ different parts.
1992 IMO Longlists, 60
Does there exist a set $ M$ with the following properties?
[i](i)[/i] The set $ M$ consists of 1992 natural numbers.
[i](ii)[/i] Every element in $ M$ and the sum of any number of elements have the form $ m^k$ $ (m, k \in \mathbb{N}, k \geq 2).$
2013 IMO Shortlist, C1
Let $n$ be an positive integer. Find the smallest integer $k$ with the following property; Given any real numbers $a_1 , \cdots , a_d $ such that $a_1 + a_2 + \cdots + a_d = n$ and $0 \le a_i \le 1$ for $i=1,2,\cdots ,d$, it is possible to partition these numbers into $k$ groups (some of which may be empty) such that the sum of the numbers in each group is at most $1$.
2015 Belarus Team Selection Test, 1
Let $n \ge 2$ be an integer, and let $A_n$ be the set \[A_n = \{2^n - 2^k\mid k \in \mathbb{Z},\, 0 \le k < n\}.\] Determine the largest positive integer that cannot be written as the sum of one or more (not necessarily distinct) elements of $A_n$ .
[i]Proposed by Serbia[/i]
1993 IMO Shortlist, 2
Let $n,k \in \mathbb{Z}^{+}$ with $k \leq n$ and let $S$ be a set containing $n$ distinct real numbers. Let $T$ be a set of all real numbers of the form $x_1 + x_2 + \ldots + x_k$ where $x_1, x_2, \ldots, x_k$ are distinct elements of $S.$ Prove that $T$ contains at least $k(n-k)+1$ distinct elements.
2012 India IMO Training Camp, 3
Determine the greatest positive integer $k$ that satisfies the following property: The set of positive integers can be partitioned into $k$ subsets $A_1, A_2, \ldots, A_k$ such that for all integers $n \geq 15$ and all $i \in \{1, 2, \ldots, k\}$ there exist two distinct elements of $A_i$ whose sum is $n.$
[i]Proposed by Igor Voronovich, Belarus[/i]
1992 IMO Shortlist, 15
Does there exist a set $ M$ with the following properties?
[i](i)[/i] The set $ M$ consists of 1992 natural numbers.
[i](ii)[/i] Every element in $ M$ and the sum of any number of elements have the form $ m^k$ $ (m, k \in \mathbb{N}, k \geq 2).$
2014 India IMO Training Camp, 3
Let $r$ be a positive integer, and let $a_0 , a_1 , \cdots $ be an infinite sequence of real numbers. Assume that for all nonnegative integers $m$ and $s$ there exists a positive integer $n \in [m+1, m+r]$ such that
\[ a_m + a_{m+1} +\cdots +a_{m+s} = a_n + a_{n+1} +\cdots +a_{n+s} \]
Prove that the sequence is periodic, i.e. there exists some $p \ge 1 $ such that $a_{n+p} =a_n $ for all $n \ge 0$.