This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 116

2021 China Team Selection Test, 3

Given positive integer $n$. Prove that for any integers $a_1,a_2,\cdots,a_n,$ at least $\lceil \tfrac{n(n-6)}{19} \rceil$ numbers from the set $\{ 1,2, \cdots, \tfrac{n(n-1)}{2} \}$ cannot be represented as $a_i-a_j (1 \le i, j \le n)$.

PEN P Problems, 13

Let $a_{1}=1$, $a_{2}=2$, $a_{3}$, $a_{4}$, $\cdots$ be the sequence of positive integers of the form $2^{\alpha}3^{\beta}$, where $\alpha$ and $\beta$ are nonnegative integers. Prove that every positive integer is expressible in the form \[a_{i_{1}}+a_{i_{2}}+\cdots+a_{i_{n}},\] where no summand is a multiple of any other.

1979 IMO Shortlist, 21

Let $N$ be the number of integral solutions of the equation \[x^2 - y^2 = z^3 - t^3\] satisfying the condition $0 \leq x, y, z, t \leq 10^6$, and let $M$ be the number of integral solutions of the equation \[x^2 - y^2 = z^3 - t^3 + 1\] satisfying the condition $0 \leq x, y, z, t \leq 10^6$. Prove that $N >M.$

PEN P Problems, 30

Let $a_{1}, a_{2}, a_{3}, \cdots$ be an increasing sequence of nonnegative integers such that every nonnegative integer can be expressed uniquely in the form $a_{i}+2a_{j}+4a_{k}$, where $i, j, $ and $k$ are not necessarily distinct. Determine $a_{1998}$.

2006 QEDMO 2nd, 12

Let $a_{1}=1$, $a_{2}=2$, $a_{3}$, $a_{4}$, $\cdots$ be the sequence of positive integers of the form $2^{\alpha}3^{\beta}$, where $\alpha$ and $\beta$ are nonnegative integers. Prove that every positive integer is expressible in the form \[a_{i_{1}}+a_{i_{2}}+\cdots+a_{i_{n}},\] where no summand is a multiple of any other.

2010 APMO, 2

For a positive integer $k,$ call an integer a $pure$ $k-th$ $power$ if it can be represented as $m^k$ for some integer $m.$ Show that for every positive integer $n,$ there exists $n$ distinct positive integers such that their sum is a pure $2009-$th power and their product is a pure $2010-$th power.

1992 IMO Longlists, 23

An [i]Egyptian number[/i] is a positive integer that can be expressed as a sum of positive integers, not necessarily distinct, such that the sum of their reciprocals is $1$. For example, $32 = 2 + 3 + 9 + 18$ is Egyptian because $\frac 12 +\frac 13 +\frac 19 +\frac{1}{18}=1$ . Prove that all integers greater than $23$ are [i]Egyptian[/i].

PEN P Problems, 33

Let $a_{1}, a_{2}, \cdots, a_{k}$ be relatively prime positive integers. Determine the largest integer which cannot be expressed in the form \[x_{1}a_{2}a_{3}\cdots a_{k}+x_{2}a_{1}a_{3}\cdots a_{k}+\cdots+x_{k}a_{1}a_{2}\cdots a_{k-1}\] for some nonnegative integers $x_{1}, x_{2}, \cdots, x_{k}$.

PEN P Problems, 24

Show that any integer can be expressed as the form $a^{2}+b^{2}-c^{2}$, where $a, b, c \in \mathbb{Z}$.

1990 IMO Longlists, 16

We call an integer $k \geq 1$ having property $P$, if there exists at least one integer $m \geq 1$ which cannot be expressed in the form $m = \varepsilon_1 z_1^k + \varepsilon_2 z_2^k + \cdots + \varepsilon_{2k} z_{2k}^k $ , where $z_i$ are nonnegative integer and $\varepsilon _i = 1$ or $-1$, $i = 1, 2, \ldots, 2k$. Prove that there are infinitely many integers $k$ having the property $P.$

PEN P Problems, 2

Show that each integer $n$ can be written as the sum of five perfect cubes (not necessarily positive).

1990 IMO Longlists, 3

The integer $ 9$ can be written as a sum of two consecutive integers: $ 9 \equal{} 4\plus{}5.$ Moreover, it can be written as a sum of (more than one) consecutive positive integers in exactly two ways: $ 9 \equal{} 4\plus{}5 \equal{} 2\plus{}3\plus{}4.$ Is there an integer that can be written as a sum of $ 1990$ consecutive integers and that can be written as a sum of (more than one) consecutive positive integers in exactly $ 1990$ ways?

2021 China Team Selection Test, 3

Given positive integer $n$. Prove that for any integers $a_1,a_2,\cdots,a_n,$ at least $\lceil \tfrac{n(n-6)}{19} \rceil$ numbers from the set $\{ 1,2, \cdots, \tfrac{n(n-1)}{2} \}$ cannot be represented as $a_i-a_j (1 \le i, j \le n)$.

2014 IMO Shortlist, N1

Let $n \ge 2$ be an integer, and let $A_n$ be the set \[A_n = \{2^n - 2^k\mid k \in \mathbb{Z},\, 0 \le k < n\}.\] Determine the largest positive integer that cannot be written as the sum of one or more (not necessarily distinct) elements of $A_n$ . [i]Proposed by Serbia[/i]

2012 ELMO Shortlist, 3

Let $s(k)$ be the number of ways to express $k$ as the sum of distinct $2012^{th}$ powers, where order does not matter. Show that for every real number $c$ there exists an integer $n$ such that $s(n)>cn$. [i]Alex Zhu.[/i]

PEN P Problems, 39

In how many ways can $2^{n}$ be expressed as the sum of four squares of natural numbers?

2002 India IMO Training Camp, 16

Is it possible to find $100$ positive integers not exceeding $25,000$, such that all pairwise sums of them are different?

1969 IMO Shortlist, 63

$(SWE 6)$ Prove that there are infinitely many positive integers that cannot be expressed as the sum of squares of three positive integers.

1977 IMO Longlists, 10

Let $a,b$ be two natural numbers. When we divide $a^2+b^2$ by $a+b$, we the the remainder $r$ and the quotient $q.$ Determine all pairs $(a, b)$ for which $q^2 + r = 1977.$

PEN P Problems, 28

Prove that any positive integer can be represented as a sum of Fibonacci numbers, no two of which are consecutive.

1969 IMO Longlists, 18

$(FRA 1)$ Let $a$ and $b$ be two nonnegative integers. Denote by $H(a, b)$ the set of numbers $n$ of the form $n = pa + qb,$ where $p$ and $q$ are positive integers. Determine $H(a) = H(a, a)$. Prove that if $a \neq b,$ it is enough to know all the sets $H(a, b)$ for coprime numbers $a, b$ in order to know all the sets $H(a, b)$. Prove that in the case of coprime numbers $a$ and $b, H(a, b)$ contains all numbers greater than or equal to $\omega = (a - 1)(b -1)$ and also $\frac{\omega}{2}$ numbers smaller than $\omega$

PEN P Problems, 15

Find all integers $m>1$ such that $m^3$ is a sum of $m$ squares of consecutive integers.

1992 IMO Longlists, 60

Does there exist a set $ M$ with the following properties? [i](i)[/i] The set $ M$ consists of 1992 natural numbers. [i](ii)[/i] Every element in $ M$ and the sum of any number of elements have the form $ m^k$ $ (m, k \in \mathbb{N}, k \geq 2).$

PEN P Problems, 4

Determine all positive integers that are expressible in the form \[a^{2}+b^{2}+c^{2}+c,\] where $a$, $b$, $c$ are integers.

1975 IMO Shortlist, 11

Let $a_{1}, \ldots, a_{n}$ be an infinite sequence of strictly positive integers, so that $a_{k} < a_{k+1}$ for any $k.$ Prove that there exists an infinity of terms $ a_{m},$ which can be written like $a_m = x \cdot a_p + y \cdot a_q$ with $x,y$ strictly positive integers and $p \neq q.$