This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2020 Tournament Of Towns, 4

We say that a nonconstant polynomial $p(x)$ with real coefficients is split into two squares if it is represented as $a(x) +b(x)$ where $a(x)$ and $b(x)$ are squares of polynomials with real coefficients. Is there such a polynomial $p(x)$ that it may be split into two squares: a) in exactly one way; b) in exactly two ways? Note: two splittings that differ only in the order of summands are considered to be the same. Sergey Markelov

2021 Korea Winter Program Practice Test, 3

$n\ge2$ is a given positive integer. $i\leq a_i \leq n$ satisfies for all $1\leq i\leq n$, and $S_i$ is defined as $a_1+a_2+...+a_i(S_0=0)$. Show that there exists such $1\leq k\leq n$ that satisfies $a_k^2+S_{n-k}<2S_n-\frac{n(n+1)}{2}$.

1975 IMO Shortlist, 5

Let $M$ be the set of all positive integers that do not contain the digit $9$ (base $10$). If $x_1, \ldots , x_n$ are arbitrary but distinct elements in $M$, prove that \[\sum_{j=1}^n \frac{1}{x_j} < 80 .\]

1999 All-Russian Olympiad Regional Round, 8.1

A father and two sons went to visit their grandmother, who Raya lives $33$ km from the city. My father has a motor roller, the speed of which $25$ km/h, and with a passenger - $20$ km/h (with two passengers on a scooter It’s impossible to move). Each of the brothers walks along the road at a speed of $5$ km/h. Prove that all three can get to grandma's in $3$ hours

2016 ASMT, General

[u]General Round[/u] [b]p1.[/b] Alice can bake a pie in $5$ minutes. Bob can bake a pie in $6$ minutes. Compute how many more pies Alice can bake than Bob in $60$ minutes. [b]p2.[/b] Ben likes long bike rides. On one ride, he goes biking for six hours. For the first hour, he bikes at a speed of $15$ miles per hour. For the next two hours, he bikes at a speed of $12$ miles per hour. He remembers biking $90$ miles over the six hours. Compute the average speed, in miles per hour, Ben biked during the last three hours of his trip. [b]p3.[/b] Compute the perimeter of a square with area $36$. [b]p4.[/b] Two ants are standing side-by-side. One ant, which is $4$ inches tall, casts a shadow that is $10$ inches long. The other ant is $6$ inches tall. Compute, in inches, the length of the shadow that the taller ant casts. [b]p5.[/b] Compute the number of distinct line segments that can be drawn inside a square such that the endpoints of the segment are on the square and the segment divides the square into two congruent triangles. [b]p6.[/b] Emily has a cylindrical water bottle that can hold $1000\pi$ cubic centimeters of water. Right now, the bottle is holding $100\pi$ cubic centimeters of water, and the height of the water is $1$ centimeter. Compute the radius of the water bottle. [b]p7.[/b] Given that $x$ and $y$ are nonnegative integers, compute the number of pairs $(x, y)$ such that $5x + y = 20$. [b]p8.[/b] A sequence an is recursively defined where $a_n = 3(a_{n-1}-1000)$ for $n > 0$. Compute the smallest integer $x$ such that when $a_0 = x$, $a_n > a_0$ for all $n > 0$. [b]p9.[/b] Compute the probability that two random integers, independently chosen and both taking on an integer value between $1$ and $10$ with equal probability, have a prime product. [b]p10.[/b] If $x$ and $y$ are nonnegative integers, both less than or equal to $2$, then we say that $(x, y)$ is a friendly point. Compute the number of unordered triples of friendly points that form triangles with positive area. [b]p11.[/b] Cindy is thinking of a number which is $4$ less than the square of a positive integer. The number has the property that it has two $2$-digit prime factors. What is the smallest possible value of Cindy's number? [b]p12.[/b] Winona can purchase a pencil and two pens for $250$ cents, or two pencils and three pens for $425$ cents. If the cost of a pencil and the cost of a pen does not change, compute the cost in cents of five pencils and six pens. [b]p13.[/b] Colin has an app on his phone that generates a random integer betwen $1$ and $10$. He generates $10$ random numbers and computes the sum. Compute the number of distinct possible sums Colin can end up with. [b]p14.[/b] A circle is inscribed in a unit square, and a diagonal of the square is drawn. Find the total length of the segments of the diagonal not contained within the circle. [b]p15.[/b] A class of six students has to split into two indistinguishable teams of three people. Compute the number of distinct team arrangements that can result. [b]p16.[/b] A unit square is subdivided into a grid composed of $9$ squares each with sidelength $\frac13$ . A circle is drawn through the centers of the $4$ squares in the outermost corners of the grid. Compute the area of this circle. [b]p17.[/b] There exists exactly one positive value of $k$ such that the line $y = kx$ intersects the parabola $y = x^2 + x + 4$ at exactly one point. Compute the intersection point. [b]p18.[/b] Given an integer $x$, let $f(x)$ be the sum of the digits of $x$. Compute the number of positive integers less than $1000$ where $f(x) = 2$. [b]p19.[/b] Let $ABCD$ be a convex quadrilateral with $BA = BC$ and $DA = DC$. Let $E$ and $F$ be the midpoints of $BC$ and $CD$ respectively, and let $BF$ and $DE$ intersect at $G$. If the area of $CEGF$ is $50$, what is the area of $ABGD$? [b]p20.[/b] Compute all real solutions to $16^x + 4^{x+1} - 96 = 0$. [b]p21.[/b] At an M&M factory, two types of M&Ms are produced, red and blue. The M&Ms are transported individually on a conveyor belt. Anna is watching the conveyor belt, and has determined that four out of every five red M&Ms are followed by a blue one, while one out of every six blue M&Ms is followed by a red one. What proportion of the M&Ms are red? [b]p22.[/b] $ABCDEFGH$ is an equiangular octagon with side lengths $2$, $4\sqrt2$, $1$, $3\sqrt2$, $2$, $3\sqrt2$, $3$, and $2\sqrt2$,in that order. Compute the area of the octagon. [b]p23.[/b] The cubic $f(x) = x^3 +bx^2 +cx+d$ satisfies $f(1) = 3$, $f(2) = 6$, and $f(4) = 12$. Compute $f(3)$. [b]p24.[/b] Given a unit square, two points are chosen uniformly at random within the square. Compute the probability that the line segment connecting those two points touches both diagonals of the square. [b]p25.[/b] Compute the remainder when: $$5\underbrace{666...6666}_{2016 \,\, sixes}5$$ is divided by $17$. [u]General Tiebreaker [/u] [b]Tie 1.[/b] Trapezoid $ABCD$ has $AB$ parallel to $CD$, with $\angle ADC = 90^o$. Given that $AD = 5$, $BC = 13$ and $DC = 18$, compute the area of the trapezoid. [b]Tie 2.[/b] The cubic $f(x) = x^3- 7x - 6$ has three distinct roots, $a$, $b$, and $c$. Compute $\frac{1}{a} + \frac{1}{b} + \frac{1}{c}$ . [b]Tie 3.[/b] Ben flips a fair coin repeatedly. Given that Ben's first coin flip is heads, compute the probability Ben flips two heads in a row before Ben flips two tails in a row. PS. You should use hide for answers.

2007 iTest Tournament of Champions, 4

For each positive integer $n$, let $S_n = \sum_{k=1}^nk^3$, and let $d(n)$ be the number of positive divisors of $n$. For how many positive integers $m$, where $m\leq 25$, is there a solution $n$ to the equation $d(S_n) = m$?

2008 Putnam, A1

Let $ f: \mathbb{R}^2\to\mathbb{R}$ be a function such that $ f(x,y)\plus{}f(y,z)\plus{}f(z,x)\equal{}0$ for real numbers $ x,y,$ and $ z.$ Prove that there exists a function $ g: \mathbb{R}\to\mathbb{R}$ such that $ f(x,y)\equal{}g(x)\minus{}g(y)$ for all real numbers $ x$ and $ y.$

2014 EGMO, 1

Tags: algebra
Determine all real constants $t$ such that whenever $a$, $b$ and $c$ are the lengths of sides of a triangle, then so are $a^2+bct$, $b^2+cat$, $c^2+abt$.

2011 China Team Selection Test, 1

Tags: algebra , function
Let $n\geq 2$ be a given integer. Find all functions $f:\mathbb{R}\rightarrow \mathbb{R}$ such that \[f(x-f(y))=f(x+y^n)+f(f(y)+y^n), \qquad \forall x,y \in \mathbb R.\]

2023 Pan-African, 3

Tags: algebra
Consider a sequence of real numbers defined by: \begin{align*} x_{1} & = c \\ x_{n+1} & = cx_{n} + \sqrt{c^{2} - 1}\sqrt{x_{n}^{2} - 1} \quad \text{for all } n \geq 1. \end{align*} Show that if $c$ is a positive integer, then $x_{n}$ is an integer for all $n \geq 1$. [i](South Africa)[/i]

2012 Princeton University Math Competition, B3

Tags: algebra
Evaluate $\sqrt[3]{26 + 15\sqrt3} + \sqrt[3]{26 - 15\sqrt3}$

1969 IMO Longlists, 54

$(POL 3)$ Given a polynomial $f(x)$ with integer coefficients whose value is divisible by $3$ for three integers $k, k + 1,$ and $k + 2$. Prove that $f(m)$ is divisible by $3$ for all integers $m.$

2019 Thailand TST, 3

Determine all polynomials $P (x, y), Q(x, y)$ and $R(x, y)$ with real coefficients satisfying $$P (ux + vy, uy + vx) = Q(x, y)R(u, v)$$ for all real numbers $u, v, x$ and $y$.

2025 NEPALTST, 3

Find all functions $f : \mathbb{R}^+ \rightarrow \mathbb{R}^+$ such that \[f(f(x)) + xf(xy) = x + f(y)\] for all positive real numbers $x$ and $y$. [i](Andrew Brahms, USA)[/i]

2000 IberoAmerican, 3

Tags: algebra
Find all the solutions of the equation \[\left(x+1\right)^y-x^z=1\] For $x,y,z$ integers greater than 1.

2016 Tournament Of Towns, 6

$N $ different numbers are written on blackboard and one of these numbers is equal to $0$.One may take any polynomial such that each of its coefficients is equal to one of written numbers ( there may be some equal coefficients ) and write all its roots on blackboard.After some of these operations all integers between $-2016$ and $2016$ were written on blackboard(and some other numbers maybe). Find the smallest possible value of $N $.

Mid-Michigan MO, Grades 7-9, 2010

[b]p1.[/b] Find the smallest whole number $n \ge 2$ such that the product $(2^2 - 1)(3^2 - 1) ... (n^2 - 1)$ is the square of a whole number. [b]p2.[/b] The figure below shows a $ 10 \times 10$ square with small $2 \times 2$ squares removed from the corners. What is the area of the shaded region? [img]https://cdn.artofproblemsolving.com/attachments/7/5/a829487cc5d937060e8965f6da3f4744ba5588.png[/img] [b]p3.[/b] Three cars are racing: a Ford $[F]$, a Toyota $[T]$, and a Honda $[H]$. They began the race with $F$ first, then $T$, and $H$ last. During the race, $F$ was passed a total of $3$ times, $T$ was passed $5$ times, and $H$ was passed $8$ times. In what order did the cars finish? [b]p4.[/b] There are $11$ big boxes. Each one is either empty or contains $8$ medium-sized boxes inside. Each medium box is either empty or contains $8$ small boxes inside. All small boxes are empty. Among all the boxes, there are a total of $102$ empty boxes. How many boxes are there altogether? [b]p5.[/b] Ann, Mary, Pete, and finally Vlad eat ice cream from a tub, in order, one after another. Each eats at a constant rate, each at his or her own rate. Each eats for exactly the period of time that it would take the three remaining people, eating together, to consume half of the tub. After Vlad eats his portion there is no more ice cream in the tube. How many times faster would it take them to consume the tub if they all ate together? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2013 All-Russian Olympiad, 2

Peter and Vasil together thought of ten 5-degree polynomials. Then, Vasil began calling consecutive natural numbers starting with some natural number. After each called number, Peter chose one of the ten polynomials at random and plugged in the called number. The results were recorded on the board. They eventually form a sequence. After they finished, their sequence was arithmetic. What is the greatest number of numbers that Vasil could have called out? [i]A. Golovanov[/i]

2011 N.N. Mihăileanu Individual, 3

Find $ \inf_{z\in\mathbb{C}} \left( |z^2+z+1|+|z^2-z+1| \right) . $ [i]Gheorghe Andrei[/i] and [i]Doru Constantin Caragea[/i]

2022 BMT, 10

Tags: algebra
Let $p, q,$ and $r$ be the roots of the polynomial $f(t) = t^3 - 2022t^2 + 2022t - 337.$ Given $$x = (q-1)\left ( \frac{2022 - q}{r-1} + \frac{2022 - r}{p-1} \right )$$ $$y = (r-1)\left ( \frac{2022 - r}{p-1} + \frac{2022 - p}{q-1} \right )$$ $$z = (p-1)\left ( \frac{2022 - p}{q-1} + \frac{2022 - q}{r-1} \right )$$ compute $xyz - qrx - rpy - pqz.$

2016 Japan MO Preliminary, 6

Integers $1 \le n \le 200$ are written on a blackboard just one by one. We surrounded just $100$ integers with circle. We call a square of the sum of surrounded integers minus the sum of not surrounded integers $score$ of this situation. Calculate the average score in all ways.

1995 Swedish Mathematical Competition, 2

Tags: algebra , clock
Botvid left home between $4$ and $5$ for a short visit to Amanda. When he came back between $5$ and $6$, he found that the hands of the clock had changed places. What time was it?

1991 Arnold's Trivium, 91

Find the Jordan normal form of the operator $e^{d/dt}$ in the space of quasi-polynomials $\{e^{\lambda t}p(t)\}$ where the degree of the polynomial $p$ is less than $5$, and of the operator $\text{ad}_A$, $B\mapsto [A, B]$, in the space of $n\times n$ matrices $B$, where $A$ is a diagonal matrix.

2015 Romania National Olympiad, 4

Let $a,b,c,d \ge 0$ real numbers so that $a+b+c+d=1$.Prove that $\sqrt{a+\frac{(b-c)^2}{6}+\frac{(c-d)^2}{6}+\frac{(d-b)^2}{6}} +\sqrt{b}+\sqrt{c}+\sqrt{d} \le 2.$

2019 Polish MO Finals, 5

The sequence $a_1, a_2, \ldots, a_n$ of positive real numbers satisfies the following conditions: \begin{align*} \sum_{i=1}^n \frac{1}{a_i} \le 1 \ \ \ \ \hbox{and} \ \ \ \ a_i \le a_{i-1}+1 \end{align*} for all $i\in \lbrace 1, 2, \ldots, n \rbrace$, where $a_0$ is an integer. Prove that \begin{align*} n \le 4a_0 \cdot \sum_{i=1}^n \frac{1}{a_i} \end{align*}